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Car Insurance

• A priori variables: age, gender, type and use of car, country

• A posteriori variables: deductibles, credibility, bonus-malus

Bonus-Malus:

• Answer to heterogeneity of behavior of drivers

• Inducement to drive more carefully

• Strongly influenced by regulatory environment and culture
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December 2012

EU rules on gender-neutral pricing in insurance.

From 21 December 2012, insurance companies in the European
Union had to charge the same price to men and women for the
same insurance products, without distinction on the grounds of
gender.
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Laurianne Krid, policy manager at FIA

”Women are safer drivers statistically, but they should pay
according to their real risk, which can be calculated objectively.”

”We want insurance to be based on criteria like type of vehicle, the
age of the driver, how much you drive during the year, and how
many accidents you have had.”

From ”E.U. Court to Insurers: Stop Making Men Pay More”, By Leo Cendrowicz, TIME, Mar. 02, 2011
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Lemaire (1995)

• optimal Bonus-Malus Systems (BMS) -assign to each
policyholder a premium based only on the number of his
accidents.

• same penalty for an accident of a small size or big size.

• optimality is obtained by minimizing the insurer’s risk.

NetPremium = E (Frequency)E (Severity)︸ ︷︷ ︸
constant
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Today’s talk

Advocate taking severity of claims into account in a BMS

• optimal BMS designed are based both on the number of
accidents of each policyholder and on the size of loss
(severity) for each accident incurred.

• optimality is obtained by minimizing the insurer’s risk.
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Literature Review

• Categorisation of Claim Severities (Discrete)
• Picard (1976): Large and Small
• Lemaire (1995): Property Damage and Bodily Injuries
• Pitrebois et al. (2006): Four types, Dirichlet Distribution

• Distributions of Claim Severities (Continuous)
• Frangos and Vrontos (2001): Pareto distribtution
• Valdez and Frees (2005): Burr XII long-tailed distribution
• Ni, C., Pantelous (2014): Weibull distribution
• Ni, Li, C., Pantelous (2014): Weibull and Pareto distribution
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Example - Lemaire (2017)

On a third party liability insurance:

Number of claims Observed policies Poisson fit NB fit

0 96, 978 96, 689.6 96, 985.5
1 9, 240 9, 773.5 9, 222.5
2 704 493.9 711.7
3 43 16.6 50.7
4 9 0.4 3.6
5+ 0 0 0
Total 106, 974 106, 974 106, 974

Note: Poisson Mean = 0.1011 and Variance = 0.1070

Jean Lemaire, 2017, Easter School, Liverpool
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Mixed Poisson distributions

• Obviously Poisson is not the best fit!

• Need a distribution that exhibits positive contagion
(dependence)

• Still assume that each individual has claims according to a
Poisson(λ) process

• However, assume λ is a continuous random variable with
density g(λ),

P(N(t) = n) =

∫ ∞
0

P(N(t) = λ | λ)g(λ)dλ

Jean Lemaire, 2017, Easter School, Liverpool
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Negative Binomial (NB) Claim Frequency

Mixing Poisson with Gamma(α, τ) results in Negative Binomial

P(N = n) =

∫ ∞
0

e−λλn

n!
· λ

α−1τθe−τλ

Γ(α)
dλ =

(
n + α− 1

n

)
τα
(

1

1 + τ

)α+n

.

Bayesian Approach - Posterior Distribution Gamma(α + K , τ + t)

µ(λ|k1, k2, . . . , kt) =
(τ + t)K+αλK+α−1e−(t+τ)λ

Γ(α + K)
, K =

t∑
i=1

ki

Best Estimate - Posterior Mean

E [Frequency ] = λt+1(k1, k2, . . . , kt) =
α + K

τ + t
.
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Average number of claims

• Apriori - Gamma(α, τ): λ̂ = α
τ

• Observe claim history: {k1, k2, . . . , kt}, K = k1 + · · ·+ kt
• Aposteriori - Gamma(α + K , τ + t): λ̂ = α+K

τ+t
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Net Premium in Optimal BMS with NB

Premium = E (Frequency)︸ ︷︷ ︸
=α+K

τ+t

∗E (Severity)︸ ︷︷ ︸
=constant
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Distributions for claims severity

Tail behaviours of three comparative distributions [Boland 2007]

Exponential : P(X > x) = exp(−θx);

Weibull : P(X > x) = exp(−θxγ);

Pareto : P(X > x) =

(
θ

θ + x

)s

.
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Pareto Claim Severity

Mixing exponential with Inv.Gamma(m,s) results in Pareto(s,m)

F (x) =

∫ ∞
0

(1− e−θx)
e−mθ(θm)s+1

mΓ(s)
dθ = 1−

(
m

m + x

)s

Bayesian Approach - Posterior Distribution

π(θ| x1, x2, . . . , xK︸ ︷︷ ︸
claims′history

) ∼ Inv .Gamma(m + M, s + K), M =
K∑

k=1

xk

Best Estimate - Posterior Mean

E [Severity ] =
m + M

s + K − 1
, M =

K∑
k=1

xk
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Net Premium in optimal BMS with NB and Pareto

Premium =
α + K

τ + t︸ ︷︷ ︸
E(frequency)

m + M

s + K − 1︸ ︷︷ ︸
E(severity)
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Weibull Claim Severity

Mixing exponential with a Levy distribution

F (x) =

∫ ∞
0

(1− e−θx)
c

2
√
πθ3

exp

(
− c2

4θ

)
dθ = 1− exp

(
−c
√
x
)
.

Bayesian Approach - Posterior Distribution

π(θ|x1, x2, . . . , xK ) =

(
α′

β′

) v
2
θv−1exp

(
− 1

2

(
α′θ + β′

θ

))
2Bv

(√
α′β′

) ,

Bv modified Bessel function, M =
∑K

k=1 xk , α′ = 2M, β′ = c2

2
, v = K − 1

2
.

Best Estimate - Posterior Mean

E [Severity ] =
2
√
M

c

BK− 1
2
(c
√
M)

BK+ 1
2
(c
√
M)

.
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Net Premium in optimal BMS with NB and Weibull

Premium =


α+K
t+τ ·

(
2
√
M
c

B
K− 1

2
(c
√
M)

B
K+1

2
(c
√
M)

)
: M > 0(

α
t+τ

) (
2
c2

)
: M = 0

where M =
∑K

k=1 xk .
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Numerical Illustration

Histogram of Claim Severities

Claim Severities
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• Data source: [Klugman et
al., 1998]

• Sample Size: 250
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Fitting the Distributions

Fitting Exponential, Pareto and Weibull Distributions

Claim Severities
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• Estimates of parameters
(MLE) Pareto distribution:
m ≈ 2000; s ≈ 1.34;

• Estimates of the parameter
(MLE) Weibull distribution:
c ≈ 0.02
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Analysis of the behaviour
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Comparison Between the Premium Rates in Two Models

 

 

Weibull Premiums when M=7,500
Pareto Premiums when M=7,500
Weibull Premiums when M=10,000
Pareto Premiums when M=10,000

• The Weibull model offers
cheaper premium rates

• The Weibull model is more
applicable on the scenario
where many small claims are
filed
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Mixed Strategy

A mixture of the previous two models:

• X ∼ XWei when X ≤ z

• X ∼ XPar when X > z .

Premium = Ep[XWei ]Ep[NWei ](1− q) + Ep[Xpar ]Ep[NPar ]q.

with q denoting the probability that a claim cost exceeds a certain
threshold z . Note that q and z can both be observed from a
sample and Ep stands for the posterior mean.
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Frequency Distribution

Suppose the total claim frequency is Negative Binomial distributed
N ∼ NB(α, τ).
• Number of claims above the limiting amount z follows a

Negative Binomial distribution, NPar ∼ NB(α, τq).
• Similarly NWei ∼ NB(α, τ(1− q)).

Apriori: the means of claim frequency (Pareto and Weibull claims)

E [NPar ] =
α

τq
,

E [NWei ] =
α

τ(1− q)
.

Aposteriori: the means

Ep[NPar ] =
α + qK

τq + t
,

Ep[NWei ] =
α + (1− q)K

τ(1− q) + t
.

Corina Constantinescu Bonus–Malus systems with Weibull distributed claim severities



The Net Premium Formula

Premium =

α + K (1− q)

τ(1− q) + t
·2
√
M1

c

BK(1−q)− 1
2
(c
√
M1)

BK(1−q)+ 1
2
(c
√
M1)

(1−q)+
α + Kq

τq + t
· m + M2

s + Kq − 1
q

• Kq or K (1− q) are not necessarily integers.
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Conclusions

Advantages

• Fair - as a result of Bayes rule

• Financially balanced - the average income of the insurer stays
the same every year

Disadvantages

• high penalties => encourages uninsured driving; hit and run
behaviour; change of insurer

Thus

• Instead of NB, Markov chains are used in practice.

• Similarly solution for Weibull/Pareto claims.
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