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Introduction

In the framework of the Solvency II Project, the Committee of European Insurance and Occu-
pational Pensions Supervisors (CEIOPS) has ben requested by the European Commission to
establish well defined solvency and supervisory standards in order to allow a convergent and
harmonized application across EU of the general prudential principles in the determination
of the insurance technical provisions and the required solvency capitals.

It should be emphasized that a precise definition of technical provision allows the concep-
tual distinction between reserve requirement and capital requirement (or risk capital), which
is a crucial point for deriving a consistent framework for insurance solvency. An important
step in this direction is the new method proposed for computing technical provisions, which
are defined by CEIOPS as the sum of two components:

· the best estimate component, representing the current expectation of the unpaid liabilities
towards the policyholders,

· the risk margin component, expressing a prudential loading required to offset the liability
uncertainty.

As concerning claims reserving in non-life insurance the relevant payoffs are the Outstand-
ing Loss Liabilities (OLL), that is the future cash-flows representing claims generated by the
policies written previously to the valuation date. Both the best estimate and the risk margin
of the OLL must be derived by well defined probabilistic models properly calibrated on the
relevant claims experience. However while the definition of best estimate as the (present
value of) the expected OLL seems to be widely accepted, the question of how the risk margin
of the OLL should be exactly defined is still under discussion. Two alternative approaches
to risk margin definition are currently been considered:

· the quantile (or percentile) approach, which determines the technical provisions as a spec-
ified quantile (typically at 75% or 90% probability level) of the OLL probability distribu-
tion;

· the cost-of-capital (CoC) approach, which defines the risk margin as the cost of providing
the solvency capital required to support the business-in-force until run-off.

At the end of 2005 a first round of Quantitative Impact Study (QIS1) across the Union
Member States has been completed, mainly focused on the level of prudence to be embedded
in the measurement of technical provisions under the risk margin approach. A second round
of QIS (QIS2) is currently running, where the explicit calculation of solvency requirements
for each risk driver in the insurance business is required to participants. Both the quantile
approach and the CoC approach should be considered in the risk margin computation.

In this framework the Supervisor Authorities of some Union Member States (e.g. Ger-
many, Portugal, Austria and Poland) have conducted exploratory analyses of the respective
national insurance market, addressing quantitative issues, as the level of prudence embedded
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in current technical provisions, or facing qualitative questions, as the different methods used
for determining risk margins.

In 2005 a study on the italian non-life insurance market has been started by ISVAP, aimed
to verify the applicability of some stochastic loss reserving methods and to analyze their
possible use in the supervisory activity. Following the current debate on the new reserving
standards, the original scope of the study has been extended in order to include the valuation
of the effects of the alternative definitions of best estimate, risk margin and solvency capital
considered in the Solvency II framework. In particular, the analysis has been focused on the
measurement of the level of prudence embedded in the italian Motor Third-Party Liability
(MTPL) market, benchmarking the technical provisions set up in 2004 against alternative
definitions of reserve and capital requirements. The risk margins have been computed under
both the quantile and the CoC approach. The effects of discounting future liabilities have
also been analysed, deriving best estimates and risk margins figures both on an undiscounted
and on a discounted basis.

In this study the definitions of required reserve and required capital are developed in the
theoretical framework of the fair valuation, prescribing that the future cash-flows are priced
under the principle of market-consistency. As it is well-known, the economic theory assumes
that the market price of a random cash-flow describing a future liability can be represented
as the sum of the expected discounted cash-flow and a market risk premium, the latter
expressing the loading currently required by the economic agents for facing the cash-flow
uncertainty. Usually the price can be expressed as a risk-adjusted discounted expectation,
that is by taking the expectation under a properly distorted probability distribution of the
cash-flow, the so-called risk-neutral or risk-adjusted distribution. The separate specification
of the “natural” expectation and of the risk premium is not required with this approach, since
the proper risk loading is implicitly provided by the distortion of the probability measure. It
is important to observe that the prices obtained in this way display the linearity property.

If the liability is not explicitly quoted on the market, but if a reference market however
exists, the risk-neutral approach to fair valuation can be realized performing a “marked-
to-model” pricing. The appropriate risk-adjusted distribution is derived in this case by
calibrating a well-suited stochastic pricing model on the observed prices of analogous lia-
bility cash-flows; a market consistent price is then obtained by taking again the risk-neutral
discounted expectation.

However fair valuation is not an easy task when non-life insurance liabilities are consid-
ered. Given that an efficient and well-developed reference market is not available in this case,
a reliable risk-adjusted probability distribution cannot be identified and the only viable ap-
proach to valuation is to separately specify the natural expectation of the liability cash-flow
and the corresponding risk premium. Since the risk premia are determined not only by the
preferences (risk aversion) of the economic agents, but also by the uncertainty characterizing
the liability cash-flows, also in this case a detailed stochastic model is needed in order to spec-
ify the probability distribution of the OLL. Market consistent risk loadings are then derived
by taking into account any relevant information (also exogenously and indirectly obtained)
concerning the preferences currently prevailing on the insurance market. Under this approach
to fair valuation risk premia, hence prices, typically display a sub-additivity property; the
linearity of prices can be assumed at most as an approximation.

The CEIOPS’ definition of technical provision as the sum of best estimate and risk margin
is clearly developed in this non-efficient market setting; by this point of view the alternative
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computations of risk margin proposed in the QIS2 framework appear as an attempt to gain
a market-wide consensus on a possible measurement of the risk premia.

In order to apply the fair valuation principles in the non-efficient market setting, two alter-
native stochastic models for loss reserving have ben considered in this study, the Distribution-
Free Chain-Ladder (DFCL) model, or “Mack’s model”, and the Over-Dispersed Poisson
(ODP) model. Both models can be considered as a stochastic version of the classical chain-
ladder method and require claims data in “triangular form”, that is organized by accident year
and development year. The ODP model has been applied by simulation, using a bootstrap
procedure to describe the estimation uncertainty; this method provides the full probabil-
ity distribution of the OLL. The DFCL model allows a closed form approach to the OLL
uncertainty, but only produces the first two moments of the probability distribution; a full
distribution has been obtained under the additional assumption of lognormality of the OLL.

The benchmarking of the observed technical provisions against alternative definitions of
the required reserve and the measurement of the level of prudence embedded in the non-
life insurance market in 2004 have been performed considering the MTPL segment and the
connected line of business, the Motor Kasko (MK) segment. In term of statutory reserve
these two lines of business represented about 59% of the overall italian non-life insurance
market on December 31, 2004. More precisely, the analysis has been concerned with:

MTPL segment
· The reserve adequacy at the individual level, considering a selected sample of 40 com-

panies, corresponding to 93% of the overall MTPL statutory reserves. These companies
were selected from an original sample of 55 companies, after data from 15 companies
containing incomplete or non-homogeneous informations have been discarded.

· The reserve adequacy on an aggregated basis, defining 4 dimensional classes determined
by the amount of the statutory reserve. The total paid losses for each dimensional class,
instead of the individual companies have been considered. In this part of the study we
considered all the companies present on the MTPL market at the end of 2004, totalling
75 companies.

MK segment
· The reserve adequacy on an aggregate basis, considering the same dimensional classes

determined for the MTPL segment.

Explicit assumptions have been made concerning the number of development years consid-
ered in the run-off triangles and the choice of the tail factors. As concerning the inflationary
effects, two different approaches have been followed.
· In the first part of the analysis the loss reserving models have been applied directly to

historical paid losses triangles. When applied to data expressed in terms of historical
costs, the traditional run-off techniques for loss reserving implicitly assume the trend of
past claims inflation as embedded into the cost development rule; therefore projected paid
losses will include the inflation trend experienced in the past. The same effect will be
observed under a stochastic loss reserving model, with the additional consequence that
the variability of past inflation can influence also the variability of the predictive OLL
distribution.

· In a second step a specific treatment of claims inflation has been performed. This is a
relevant point, given that, as prescribed by CEIOPS [8], the inflation assumptions in the
ultimate loss computation must be explicitly disclosed whenever the technical provisions
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are derived on a discounted basis. In order to express the paid losses triangles in terms
of current costs, a time series of inflation rates has been estimated on the claims inflation
experienced in the MTPL segment; to this aim an apposite model has been used, suited
for taking into account the estimated historical changes in the speed of finalization. Once
the observed paid losses have been escalated by the estimated historical inflation, the
probability distribution of the OLL has been derived using apposite uncertainty models
for both technical cost development and claims inflation. These models were obtained
by joining the stochastic loss reserving models without inflation with a lognormal model
for stochastic inflation, where the future claims cost process is specified as a geometric
brownian motion with given trend and volatility.

In the study the analysis of reserve adequacy has been developed considering both the two
methods proposed in the framework of Solvency II for the computation of the risk margins, the
quantile and the CoC method. Particular attention has been also devoted to the measurement
of the reserve risk and of the corresponding capital requirement, the so-called reserve risk
capital. A systematic comparison has been performed between risk capital figures obtained
by the application of the DFCL and the ODP model to MTPL data, and the corresponding
Solvency Capital Requirement (SCR) computed as specified in the QIS2 technical document.

In order to define a unified framework for the fair valuation and the risk control of non-
life insurance liabilities a number of delicate methodological issues must be addressed. Some
relevant problems tackled in the study are the following.

· As usual, risk capital measures are defined under a one-year view, requiring that solvency
is guaranteed over a one year horizon and then iterating the solvency control at the
beginning of each year. Hence in order to model the year-end obligations of the insurer
the probability distribution of both the first year liabilities and of the year-end assessment
of the residual reserve have been derived.

· Under a marked-to-model approach a rigorous risk capital assessment requires a “mixed
approach” involving both risk-neutral and natural probabilities. The former are required
for deriving the fair value at the year-end of the residual OLL, the latter are needed for
computing its worst case assessment. Since a reliable fair valuation model is not readily
available for non-life liabilities, some approximations must be made. A number of different
approaches and approximations are considered and compared between each other in the
study.

· It has been recognised that a CoC definition of risk margin can pose consistency problems
with the corresponding risk capital definition1. A CoC approach to risk margin is proposed
which avoids inconsistencies and seems economically meaningful.

· When liabilities with different maturities are aggregated on an undiscounted basis, the
subadditivity property of risk margins produces a diversification effect of the overall risk.
Of course this risk reduction effect must be saved when discounting is allowed; this requires
a non-trivial application of the stochastic loss reserving models.

The rest of this paper is organised as follows. The first part is devoted to the theoretical
framework. In the first chapter the general principles of fair valuation are illustrated and
possible definitions of required reserve and required capital are considered. After a number

1See for example the “circularity” problems recently referred to by CRO Forum [10].
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of reasonable approximations for the reserve risk capital have been introduced, corresponding
consistent definitions of risk margin as CoC are provided.

In chapter two the classical run-off techniques for modelling non-life insurance liabilities
are illustrated and the essential features of two stochastic models for claims reserving – the
DFCL and the ODP model – are presented. For both models the problem of including the
estimation error in the OLL variability is considered.

The applications to Italian market data are described in the second part of the paper. A
description of the data used in the analysis is given in chapter 3. In chapter 4 the DFCL
and the ODP model are applied to MTPL triangles of historical paid losses of individual
companies, without any explicit treatment of claims inflation. In the first section the reserve
adequacy is considered on an undiscounted basis. For each company in the selected sample
and for the two models considered, risk margins as quantile, reserve risk capitals and risk
margins as CoC are computed. A similar analysis is performed in the second section refer-
ring to discounted liabilities. An analysis of the MTPL and the MK market at aggregate
level follows. Finally a detailed numerical illustration is given, comparing values of risk mar-
gins and risk capitals derived under alternative models and using different definitions and
approximations, including the QIS2 specification of SCR.

In chapter 5 the reserve adequacy is studied considering the inflation effects. In the first
section the adjustment of the historical payments for past inflation is considered. A time series
of annual inflation rates for the MTPL segment is estimated considering historical market
data on claims costs and claims counts. A simple model is used for correcting the inflation
rates for changes in the speed of finalization (this model is described in appendix B). The
estimated time series of inflation rates has ben used for escalating the historical paid losses,
thus providing a triangle of inflation-adjusted payments for each company in the sample.
The DFCL and the ODP model have been then applied to the inflation-adjusted triangles
and the OLL probability distributions obtained have been compared with the corresponding
distributions derived in chapter 4. This allows to appreciate the effects of the “embedded
inflation” which is implicitly assumed using unadjusted triangles as payments data. In the
second section the DFCL and the ODP model are “extended”, including as an additional
source of uncertainty a stochastic claims cost process, which is modelled as a geometric
Brownian motion. The effects of the projected stochastic inflation are examined applying the
extended models to the inflation-adjusted triangles.
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The theoretical framework
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Chapter 1

Reserve and capital requirements
for non-life insurance liabilities

1.1 Reserve and capital requirements in an elementary setting

1.1.1 Best estimate, risk margin and fair value of the liabilities

At time t let us consider a specified line of business in P&C insurance and let us denote by L
the corresponding total Outstanding Loss Liabilities (OLL) of the insurer. Let us suppose for
the moment that the liabilities L will be paid at a single future date T and that discounting
effects can be ignored. Of course L is a r.v. at time t.

Undiscounted required reserve

In this elementary setting the required reserve (RR) is defined as the sum R∗ of a best estimate
L of the OLL and a (non-negative) risk margin δ:

R∗ := L + δ . (1.1)

Of course both the best estimate L and the risk margin δ must be properly defined.

Best estimate

The most appropriate interpretation of best estimate (BE) seems to define L as the expecta-
tion E(L) of the OLL. As a general principle E(L) is the mean of the probability distribution
of the unpaid liabilities L. It is worthwhile to mention that in practical applications one get a
predicted value L̂ of the OLL provided by a suitable statistical model estimated on observed
data. Since data are usually considered as a random observation sample, also the estimate L̂
is a r.v. and the predictive distribution of L̂ must be considered as providing the probability
distribution of the OLL1.

Remark. In some cases the median of the distribution has been proposed as an alternative
definition of best estimate of L.

1Although this is the formulation of the predictive process usually found in the literature, a more rigorous
description of the inferential problem would be obtained in the language of Bayesian statistics.
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Risk margin and market value margin

While an interpretation of L as the expectation E(L) seems to be widely accepted, the
appropriate definition of risk margin is currently an open issue. It is a common opinion
that the risk margin (RM) should represent a prudential margin required to offset the large
uncertainty of the unpaid liabilities. However this margin should not be raised up to an
extreme level of protection. A reasonable approach seems to assume the required reserve
R∗ as a market consistent assessment of the debt of the insurer towards the policyholders,
that is as the amount a well informed third party would require in a competitive market
for relieving the insurer from its obligations. This point of view is declaratedly in line with
the well-known definition of the fair value V of the unpaid liabilities. We shall denote by
V(t;XT ) the market price at time t of the random amount to be paid at time T . Hence the
fair value of the OLL is given by:

V = V(t;L) .

Under the fair value (FV) assumption the required reserve is defined as the fair value of
the liabilities:

R∗ = V(t;L) . (1.2)

Hence R∗ is the market price V of the random payoff L and the risk margin remains implicitly
defined as the risk loading λ over the expected value E(L) required on the market by risk
adverse investors in order to take over the liabilities L. This loading can also referred to as
the Market Value Margin.

Under a more conservative point of view the risk margin δ could include an additional
loading ε allowing for estimation uncertainty or for model uncertainty2. Thus the general
definition of risk margin could be:

δ := λ + ε , (1.3)

where λ provides the Market Value Margin; the extra loading ε is equal to zero under the
FV assumption.

Remark. Expression (1.3) with ε = 0 seems the interpretation accepted in the Swiss Solvency
Test (see e.g.[23]).

Remark. When the required reserve is greater than the fair value, the positive extra loading
ε = R∗ − V represents the time t value of future profits emerging during the life of the
outstanding policy portfolio. It is usually referred to as the “value of business in force” which
is the most important component of the so-called “embedded value” of the portfolio.

Remark. The previous definitions are referred to P&C insurance only to simplify the expo-
sition. Similar definitions can be introduced also in life insurance.

Required reserve and certainty equivalent

Under the FV assumption the required reserve R∗ can be considered as the market assessment

of the certainty equivalent L of the random amount L. The concept of certainty equivalent

2The idea of explicitly correcting a price assessment for model uncertainty has been recently introduced in
option pricing by R. Cont [11].
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is well-known in the traditional expected utility theory. In this setting expression (1.1) is the
celebrated representation of the insurance premium as the sum of the pure premium and the
appropriate security loading, where this loading is determined in a competitive market.

In an alternative framework the market certainty equivalent R∗ can be represented as
an expected value E∗(L) where the expectation is taken under an appropriate distorted (i.e.
risk-adjusted) probability measure (see e.g. [39], [40]).

1.1.2 Risk-adjusted value of the liabilities and reserve risk capital

With the previous risk margin definition the required reserve is obviously not sufficient to
meet usual solvency standards. In order to guarantee solvency at a given security level a
Risk Adjusted Value (RAV) of the OLL is usually specified3. The RAV of L is intended as a
very conservative valuation W(L) (a “worst case value”) of the unpaid liabilities; for example
W(L) can be fixed as the value of L which will not be exceeded with a fixed, very high level
of probability (confidence level, security level). Hence the following inequalities hold:

L < R∗ < W(L) .

Once the solvency level has ben specified by the RAV, the solvency capital required to the
insurer is the amount K defined as:

K := W(L) − R∗ = W(L) − L − δ . (1.4)

This amount is usually referred to as reserve risk (based) capital (RC), at the specified security
level. Other components of the solvency capital are usually considered, referred to additional
risk drivers. The premium risk capital, for example, is related to the risk that losses for
future claims are higher than premiums received. As only problems of reserve adequacy will
be considered in the sequel, we shall refer to the reserve risk capital K simply as risk capital
(RC). In the Solvency 2 documents the risk capital K is usually referred to as Solvency
Capital Requirement (SCR) for reserve risk.

Remark. In definition (1.4) we implicitly assume that the amount R∗ is exactly available
to the insurer in order to meet the balance sheet constraint. In principle, if an additional
capital (a “free surplus”) F is available to the insurer, this amount can be subtracted from
K. However this netting activity will be more properly managed in a final step, where the
overall capital requirement for both assets and liabilities will be computed.

Referring to a general random amount X, once the RAV W(X) has been specified it is
useful to define the unanticipated value of X as the difference:

U(X) := W(X) − E(X) .

With this definition expression (1.4) reads:

K = U(L) − δ , (1.5)

which identifies the risk capital as the unanticipated loss (referred to the specified RAV)
minus the risk margin.

3The RAV can be thought of as being fixed by the market regulator. In many cases however W(L) is a
target level chosen by the insurance company in order to attain a fixed credit rating.
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Remark. The expectation E(L) is also referred to as anticipated loss. Hence the required
reserve R∗ is given by the anticipated loss plus the risk margin.

In this very simple setting the RAV of the OLL required by the regulator to the insurer is
decomposed into the sum of the required reserve R∗ and of the risk capital K. It is worthwhile
to observe that (at least under the FV assumption) the first component represents the market
price of the OLL and, in principle, should be provided by the policyholders (i.e. covered by
premiums). The second component is provided by the insurer (i.e. by the shareholders) and
with high probability will result unused after the liabilities have been paid; however a cost
for interest has to be considered for this capital since an appropriate return will be required
by the shareholders.

The cost of risk capital

Let us denote by h the rate of return required at time t by the shareholders for investing in
the risky asset represented by the insurance business we are considering. If i is the risk-free
rate of return prevailing on the market, the cost at time t of the reserve risk capital (again
ignoring discounting) is given by:

κ := sK ,

where s := h − i is the spread between the shareholders’ return and the risk-free rate.

1.1.3 Risk margin as the cost of risk capital

In an efficient security market the excess return s is non-negative and represents the risk
premium required in equilibrium by the investors for holding the insurance security. Hence it
could make sense to use the cost of the risk capital κ as a proxy of the risk margin δ. Posing
δ = κ = sK in (1.5) one has K = U(L) − sK; hence one obtains:

K =
W(L) − L

1 + s
, (1.6)

and:
δ =

s

1 + s

[
W(L) − L

]
. (1.7)

Since R∗ = L + δ the required reserve can be expressed as:

R∗ =
L + sW(L)

1 + s
. (1.8)

With the cost-of-capital approach the reserve problem and the capital problem are then
unified into a single problem. Both the risk capital and the market value margin are simulta-
neously determined by expression (1.6) and (1.7) once the RAV W(L) and the spread s have
been specified. Under our simplified assumptions the required reserve is a weighted average
of the best estimate L and of the RAV of the liabilities, with weight 1/(1 + s) and s/(1 + s),
respectively.

1.1.4 Examples

Assuming L := E(L) as the best estimate of L, on can consider some relevant cases. We refer
to section A in the Appendix for an explicit definition of notations.
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a) No risk margin, RAV as a quantile.

δ = 0 , W(L) = Q(99.9)(L) ,

where Q(α)(L) is the α-th quantile of L. Hence one has:

R∗ = E(L) , K = Q(99.9)(L) − E(L) .

The required reserve is given by the expected losses and the risk capital is equal to the
unexpected losses (at a 99.9% confidence level).

b) Risk margin and RAV as a quantile.

δ = Q(75)(L) − E(L) , W(L) = Q(99.9)(L) .

Hence one has:

R∗ = Q(75)(L) , K = Q(99.9)(L) − Q(75)(L) .

c) Risk margin and RAV as σ-affine functions.

δ = η′ Std(L) , W(L) = E(L) + η′′ Std(L) , η′′ > η′ > 0 ,

where Std(L) is the standard deviation of L. In this case:

R∗ = E(L) + η′ Std(L) , K = (η′′ − η′)Std(L) .

d) Risk margin as the cost of capital, RAV as a quantile.

δ = κ = sK , W(L) = Q(99.9)(L) ,

which implies:

R∗ =
E(L) + sQ(99.9)(L)

1 + s
, K =

Q(99.9)(L) − E(L)

1 + s
.

e) Risk margin as the cost of capital, RAV as the expected shortfall.

δ = κ = sK , W(L) = S(99.9)(L) ,

where S(α) := E
(
L|L ≥ Q(α)

)
is the expected shortfall at the level α, that is the expected

loss beyond the α-th quantile (also referred to as Tail-VaR). Therefore one has:

R∗ =
E(L) + sS(99.9)(L)

1 + s
, K =

S(99.9)(L) − E(L)

1 + s
.
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1.2 Reserve and capital requirements under maturity struc-
ture of the liabilities

Typical insurance liabilities have a complex maturity structure ranging over a many-year
time horizon. Also in non-life insurance the liabilities of long-tailed lines of business have
over-ten-years maturities. This maturity structure and the relative discounting effects must
be properly taken into account both in the reserve and in the risk capital definition problem.

At time t = 0 let us consider the outstanding liabilities generated by the P&C policies
collected in the previous years. These OLL will be represented by a stream:

Y :=
{
Yτ ; τ = 1, 2, . . . , T

}
,

of random payoffs ranging over T years from now, the payoff Yτ being due at the end of year
τ . Under the FV assumption the required reserve at time t = 0 is given by R∗

0 = V0, where:

V0 := V(0;Y ) ,

is the fair value of the liability stream.
For homogeneity with the previous notations we shall denote by

L :=

T∑

τ=1

Yτ ,

the sum of the OLL.

1.2.1 Fair value of the liabilities

The theory of efficient financial markets provides a formal definition of the fair value of a
payment stream. At time t and for θ ≥ 0 let us denote by v(t, t + θ) the market price at
time t of the default-free unit zero-coupon bond (ZCB) with maturity t + θ, that is the time
t value of one unit of money to be paid with certainty after θ units of time. By definition:

v(t, t + θ) := [1 + i(t, t + θ)]−θ ,

where i(t, t+θ) is the risk-free interest rate prevailing on the market at time t for the maturity
t + θ. Of course v(t, t) = 1.

For the simplicity sake we assume that there is no uncertainty on the future interest rates,
hence the future prices v(t, t + θ) are assumed to be known at time zero.

Remark. In many non-life insurance applications the assumption of certain interest rates can
provide reasonable approximations of the valuation problem. However the assumption can
be relaxed adopting a more complex formalization.

At time τ = 0, 1, . . . , T, let us denote by:

Y (τ) :=
{
Yθ; θ = τ + 1, τ + 2, . . . , T

}
,

the residual liability stream, that is the stream of the liabilities still outstanding at the end
of the year τ . Of course Y (0) = Y and Y (T ) = 0. Under the arbitrage principle in perfect
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markets the fair value of the OLL at time τ has the following expression4:

Vτ := V
(
τ ;Y (τ)

)
=

T∑

θ=τ+1

v(τ, θ)EQ
τ (Yθ) , (1.9)

where EQ
τ is the expectation at time τ taken with respect to the risk-neutral probability

measure Q. This expectation provides, by definition, the market risk loading over the “nat-
ural” expectation Eτ (Yθ); hence EQ

τ (Yθ) can be interpreted as the certainty equivalent fixed
at time τ on the market for the random liability Yθ; the corresponding market risk loading
is given by:

γ(τ, θ) := EQ
τ (Yθ) − Eτ (Yθ) , (1.10)

where Eτ is the expectation at time τ taken with respect to the natural probability measure.
Since the agents on the market are assumed to be risk-averse γ(τ, θ) is non-negative.

Representation (1.9) implies the linearity property of the valuation functional V. In
particular one has:

V
(
τ ;Y (τ)

)
=

T∑

θ=τ+1

V(τ ;Yθ) , (1.11)

where:
V(τ ;Yθ) := v(τ, θ)EQ

τ (Yθ) , (1.12)

is the fair value of the individual liability Yθ. At time zero we have:

V0 := V(0;Y ) =
T∑

τ=1

vτ Y τ , (1.13)

where we used the simplified notation vτ := v(0, τ) and we denoted by:

Y τ := EQ
τ (Yτ ) ,

the time zero certainty equivalent of Yτ .
We also denote by V −

τ the “cum dividend” value:

V −
τ := Yτ + Vτ ,

that is the fair value of the OLL immediately before the current liability Yτ has been paid.
The important property holds5:

v1 EQ
0

(
V −

1

)
= V0 . (1.14)

4This relation corresponds to the fundamental martingale property in asset pricing. It can be shown (see
e.g. [17], pp. 22-29) that the “discounted gain process” defined as:

Ṽτ := v(0, τ) Vτ +

τ∑

k=1

v(0, k) Yk , τ = 0, 1, . . . , T ,

is a martingale with respect to the risk-neutral measure; that is:

E
Q
τ (Ṽθ) = Ṽτ , 0 ≤ τ ≤ θ ≤ T ;

the price representation (1.9) is obtained for θ = T .
5By the martingale property E

Q
τ (Ṽτ+1) = Ṽτ ; in particular, for τ = 0 one has V0 = E

Q
0 (Ṽ1), that is:

V0 = E
Q
0 (v1 V1 + v1 Y1) = v1 E

Q
0 (V −

1 ) .
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1.2.2 Expected present value of the liabilities

The expected present value of the OLL at time τ is defined as:

Mτ :=
T∑

θ=τ+1

v(τ, θ)Eτ (Yθ) .

By the arbitrage principle, under deterministic interest rates this is equivalent to:

Mτ :=
T∑

θ=τ+1

v(0, τ, θ)Eτ (Yθ) . (1.15)

where:
v(0, τ, θ) :=

vθ

vτ
,

is the time zero forward rate from τ to θ (see e.g. [5], pp. 340-341). One can interpret Mτ

as the discounted best estimate of the OLL at time τ .
At time zero one has:

M0 =
T∑

τ=1

vτ Y τ , (1.16)

where Y τ denotes the expectation E0(Yτ ) of Yτ .
The “cum dividend” discounted expectation is given by:

M−
τ := Yτ + Mτ , (1.17)

and the following property is immediately proven:

v1 E0

(
M−

1

)
= M0 . (1.18)

1.2.3 The reserve as the fair value of the liabilities

Under the FV assumption the required reserve R∗
τ of the OLL at time τ is the fair value of

the residual liability stream:

R∗
τ := Vτ = V

(
τ ;Y (τ)

)
, τ = 0, 1, . . . , T . (1.19)

The corresponding market value margin is defined as:

λτ := Vτ − Mτ =

T∑

θ=τ+1

v(τ, θ)
[
EQ

τ (Yθ) − Eτ (Yθ)
]

=
T∑

θ=τ+1

v(τ, θ) γ(τ, θ) .

(1.20)

At time zero:

λ0 = V0 − M0 =

T∑

τ=1

vτ γτ , (1.21)

where γτ := γ(0, τ).
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1.2.4 Special cases

It is worth considering some special cases of the previous general setting obtained introducing
some simplifications useful for practical applications or for illustration purposes.

Undiscounted case

This is the case just considered in the introductory section 1.1. It is obtained posing v(t, t +
θ) = 1 for all t and θ, that is assuming a term structure of interest rates deterministic and flat
at zero level. In this case one can ignore the maturity structure of the OLL and can imagine
the total liabilities L =

∑T
τ=1 Yτ as falling due immediately after the valuation date.

Flat case

The flat case is the undiscounted case without risk margins, that is also assuming γ(τ, θ) = 0
for all τ and θ. In this case the risk-neutral measure coincides with the natural measure and
the required reserve R∗ is given by the best estimate L of the total liabilities.

The flat case describes the traditional setting of P&C loss reserving, where one usually
assumes that the undiscounted valuation of the liabilities implicitly includes the appropriate
risk loadings. While being extremely simplified by the financial point of view, this approach
maintains a great deal of complexity concerning the probabilistic characterization of the OLL.
Most of the stochastic models for loss reserving are defined in this framework.

Single-maturity case

The case with a single one-year maturity obtained for T = 1 is often considered, usually
for illustration purposes. In this case both the discounting effect, given by v1, and the risk
margin λ0 = v1 γ1 can be taken into account. However this single maturity simplification
conceals much of the complexity of the reserving process and of the related solvency problem.

1.2.5 Reserve risk capital under the one-year view

As the reserve requirement is maintained until the run-off of the OLL, also the solvency
requirement, i.e. the risk capital, must be set up in order to guarantee the insurer’s solvability
until the terminal liability YT has been paid. However in solvency regulation a one-year view
is usually adopted defining at time zero the RAV W0 with respect to the insurer’s obligations
at the end of the next accounting year and then iterating the procedure over the whole run-off
of the policy portfolio. Under this kind of recursive procedure a sequence of one-year risk
capitals K0,K1, . . . ,KT−1 will be defined, where Kτ is the risk capital required at time τ for
the year ending at time τ + 1.

A widely adopted RAV definition is obtained specifying W0 as an α-quantile Qα
0 (V −

1 ) at
a very high confidence level (e.g. α = 99.9%). Alternative definitions are obtained specifying
the RAV as a coherent risk measure (see [2]). For example one can choose W0 as the expected
shortfall Sα

0 (V −
1 ) at the α confidence level. For a generic random amount X, we shall assume

that the RAV operator W0(X) satisfies at least the following properties:

· Positive homogeneity : W0(cX) = cW0(X) for all constant c ≥ 0;

· Translation invariance: W0(c + X) = c + W0(X) for all constant c.
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Remark. The RAV definition W0(X) can be considered as deriving from the risk measures
ρ(X) defined by [2] and could be rigorously characterized based on axiomatic properties. In
the general axiomatic framework however the r.v. X usually represents the net worth of
a financial position. In a general approach to insurance solvency X should be the surplus
S := A − V of the company, where V is the fair value of the overall outstanding liabilities
and A is the market value of the assets backing these liabilities. We are interested here only
in the liability side and we consider the capital requirement of a single line of business of the
non-life activity. Of course a number of aggregation steps will be needed in order to tackle
the overall solvency problem including diversification and compensation effects. We refer to
[22] for a nice introduction to the insurance solvency problem in a general setting.

Definition of reserve risk capital

Let us consider the risk capital K0 required at time t = 0 for the first year. The insurer’s
obligations at time t = 1 are the sum of two random variables: the liabilities Y1 due for
the current year and the reserve R∗

1 required for the remaining stream of the outstanding
liabilities. With our notations (and under the FV assumption) these obligations are given by
the cum-dividend fair value V −

1 . Hence the RAV of the year-end obligations is:

W0 := W0(V
−
1 ) = W0(Y1 + V1) . (1.22)

In order to obtain this money amount at time t = 1 the sum v1 W0 is required at time t = 0
to the insurer. If the sum R∗

0 = V0 is exactly available, the reserve risk capital is then given
by:

K0 := v1 W0(V
−
1 ) − V0 . (1.23)

In the simple one-maturity case (i.e. for T = 1) one has V1 = 0 hence W0 = W0(Y1) and:

K0 = v1 W0(Y1) − V0 . (1.24)

Therefore the reserve problem and the risk capital problem can be viewed as two separated
issues. The former involves only the risk-neutral distribution of Y1, the latter only requires
the computation of the RAV of the natural distribution of Y1.

In the multiperiod case the situation is more complex:
· the reserve problem (i.e. the fair valuation problem) involves the T -dimensional p.d. of

the r.v. Y under the risk-adjusted measure;
· under the one-year approach, the risk capital problem (1.23) requires considering the

univariate natural probability distribution of the future reserve V −
1 , which in turn is

determined by the risk-adjusted probability at time t = 1.
Hence while natural expectations are – in principle – not needed for determining the reserve,
the risk capital assessment requires a “mixed approach” involving both natural and risk-
neutral probabilities. If a reliable market model for determining the fair value Vτ is available
then the risk capital problem can be tackled with only slight additional difficulties. This is the
typical situation when the financial component of life insurance portfolios is being valuated.
However when a robust fair valuation model is not readily available it is difficult to derive
a risk capital measure fully consistent with definition (1.23) and some approximations are
needed.

Before considering possible approximations it is worthwhile to derive an alternative rep-
resentation of the risk capital based on the definition of the unanticipated value U0(X) :=
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W0(X)−E0(X) just introduced in section 1.1.2. Recalling property (1.14), expression (1.23)
can also be written as:

K0 = U0(v1 V −
1 ) −

[
EQ

0 (v1 V −
1 ) − E0(v1 V −

1 )
]
. (1.25)

This expression makes clear that the risk capital can be obtained as the unanticipated value of
the discounted year-end obligations (computed on the natural p.d.), provided that a correction
is made to take into account the corresponding market risk margin.

In the single-maturity case one has:

K0 = U0(v1 Y1) − λ0 , (1.26)

where the market value margin is now given by λ0 = v1 γ1.

1.2.6 Approximated risk capital measures

Approximation by variability of year-end expectation

The previous definition of reserve risk capital is based on the variability of the year-end obli-
gations, which are the sum of the current-year liability Y1 and of the new reserve assessment
V1. The most natural approximation to expression (1.23) is probably obtained by substi-
tuting the variability of the year-end reserve with the variability of year-end (discounted)
expectation of future liabilities.

a) YEE approximation. Using the definitions (1.13) and (1.10) the V −
1 value can be

written as:

V −
1 = Y1 +

T∑

τ=2

v(1, τ)
[
E1(Yτ ) + γ(1, τ)

]
= M−

1 +
T∑

τ=2

v(1, τ) γ(1, τ)

= M−
1 +

1

v1

T∑

τ=2

vτ γ(1, τ) ,

where the last equality holds by the assumption of deterministic interest rates. We assume
that in the RAV computation the market risk loadings at time t = 1 can be approximated
by the current risk loadings for the corresponding maturities; that is:

γ(1, τ) ≈ γ(0, τ) , τ = 2, 3, . . . , T . (1.27)

Hence, by the λ0 definition (1.21):

T∑

τ=2

vτ γ(1, τ) ≈
T∑

τ=2

vτ γτ = λ0 − v1 γ1 .

Therefore in expression (1.22) we substitute the r.v. V −
1 with the r.v.:

M−
1 + λ0/v1 − γ1 .

obtaining the approximation:

W0(V
−
1 ) ≈ W0(M

−
1 + λ0/v1 − γ1) . (1.28)
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We shall refer to this assumption as the year-end expectation (YEE) approximation. Of
course, by the translation invariance we have W0 = W0(M

−
1 ) + λ0/v1 − γ1.

Using the RAV W0 the YEE-approximated risk capital is defined as:

K0 := v1 W0 − V0 = v1 W0(M
−
1 ) + λ0 − v1γ1 − V0 ,

that is, recalling that V0 = M0 + λ0:

K0 = v1 W0(M
−
1 ) − M0 − v1γ1 . (1.29)

With the YEE approximation the solvency assessment is essentially reduced to a problem
involving only the univariate natural distribution of the r.v. M−

1 . The RAV valuation also
depends on the specification of the risk loading γ1, but the modelling of the future risk
loadings γ(1, τ) is not required.

In the single-maturity case one has M−
1 = Y1 and v1γ1 = λ0; hence:

K0 = v1 W0(Y
−
1 ) − (Y 1 + λ0) ,

which is equal to the exact expression of K0 given by (1.24).

It is worthwhile to observe that in general the term v1γ1 is not negligible, since in typical
P&C portfolios the liabilities Yτ are decreasing with the maturity τ and the first-year payoff
Y1 can be of the same importance of the sum of the remaining payoffs.

Remark. The approximation (1.27) substitutes random with deterministic amounts, which
tends to reduce the value of the RAV W0. On the other hand the expectation at time
t = 0 of the risk-loadings γ at time t = 1 should be lower than the current risk loading
on the corresponding maturity since the time horizon is reduced by one year. Therefore
in general it remains undetermined whether the YEE approximation implies an over- or an
under-estimation of the RAV.

As stated by (1.18), one has E0(v1 M−
1 ) = M0. Then the YEE-approximated risk capital

can be also expressed as:

K0 = U0(v1 M−
1 ) − v1γ1 , (1.30)

that is as the unanticipated value of the discounted year-end expectation minus the correction
term v1γ1 which takes into account the risk loading of the first-year payoff not captured by
the natural expectation. For T = 1 this relation is obviously the same as the exact expression
(1.26).

b) ϕ-discounted YEE approximation. Let:

L :=

T∑

τ=1

Y τ ,

denote the total expected liabilities and let us define the cumulative discount factor :

ϕ :=

∑T
τ=1 vτ Y τ

L
=

M0

L
. (1.31)
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The ϕ factor is the weighted average of the discount factors vτ over the maturity range of
the liabilities, the weights being the relative expected liabilities Y τ/L. One can say that ϕ
captures the global discounting effect on the expected payoffs. Let us denote by:

Z1 := Y1 +
T∑

τ=2

E1(Yτ ) , (1.32)

the undiscounted year-end expectation of the liability stream Y . Of course E0(Z1) = L. The
ϕ-discounted YEE approximation is defined by the assumption:

W0(v1 M−
1 ) ≈ W0(ϕ Z1) . (1.33)

With this approximation, given that M0 = ϕ L by definition, expression (1.29) is changed
in:

K0 ≈ W0(ϕ Z1) − ϕ L − v1γ1 , (1.34)

which can also be written as:
K0 ≈ U0(ϕ Z1) − v1γ1 .

c) Undiscounted YEE approximation. In the undiscounted case, i.e. for vτ ≡ 1, ex-
pression (1.29) or (1.34) reduces to:

K0 ≈ W0(Z1) − L − γ1 , (1.35)

or K0 ≈ U0(Z1) − γ1, which corresponds to the traditional undiscounted approach largely
used in P&C loss reserving.

Approximation by variability of future liabilities.

The p.d. of the year-end expectation M1 of the residual liability stream Y (1) required by
the YEE approximation must be provided by a suitable stochastic model for the OLL. Many
stochastic models for loss reserving provide the p.d. of the future liabilities Yτ at maturity,
but are not well suited for producing the p.d. of there expectation at time t = 1. This
suggests further approximations.

a) LM approximation. Let us denote by:

D :=

T∑

τ=1

vτ Yτ , (1.36)

the r.v. representing the sum of the discounted liabilities. Of course E0(D) = M0. The
liability-at-maturity (LM) approximation is defined by the assumption:

W0(v1 M−
1 ) ≈ W0(D) . (1.37)

The LM-approximated risk capital is then given by:

K0 ≈ W0(D) − M0 − v1γ1 , (1.38)

or:
K0 ≈ U0(D) − v1γ1 .
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b) ϕ-discounted LM approximation. Also in this case one can obtain a ϕ-discounted
approximation using the cumulative discount factor ϕ := M0/L; that is assuming:

W0(D) ≈ W0(ϕ L) . (1.39)

This implies:
K0 ≈ W0(ϕ L) − ϕ L − v1γ1 , (1.40)

or K0 ≈ U0(ϕ L) − v1γ1.

c) Undiscounted LM approximation. Under the undiscounted approach one has:

K0 ≈ W0(L) − L − γ1 , (1.41)

or K0 ≈ U0(L) − γ1.

YEE and LM approximation in the flat case

As we just pointed out, most of the traditional approaches to loss reserving are defined in
the flat case, that is they include neither discounting nor risk margins. In this case R∗

0 = L
and expressions (1.35) and (1.41) reduce, respectively, to:

K0 ≈ W0(Z1) − L = U0(Z1) , (1.42)

and:
K0 ≈ W0(L) − L = U0(L) . (1.43)

1.2.7 Subadditivity of risk margins

Under the FV assumptions the certainty equivalent of the liability Yτ due at time τ has been

defined by Y τ := EQ
0 (Yτ ), that is as the expected payoff computed under the risk-neutral

probability. Therefore the risk margin λ0 defining the required reserve R∗
0 = M0 + λ0 is the

present value:

λ0 =

T∑

τ=1

vτ γτ , (1.44)

hence a linear combination of the individual risk loadings γτ = Y τ − Y τ .
However the risk-neutral measure can be unambiguously identified only if an efficient

market for the liabilities Y exists. Given that for P&C liabilities this is typically not the
case, risk loadings – and the corresponding certainty equivalents – have to be identified by
suitable assumptions or making some approximations. As an additional problem, when the
risk margins are not determined using risk-neutral expectations typical non-linearity problems
naturally arise. In particular, the general definition of certainty equivalent in a multiperiod
setting is of a delicate nature, involving the concept of intertemporal risk aversion (see for
example [28], pp. 43-44).

Let us maintain the assumption of deterministic interest rates. At time t = 0 let us denote

by Y
′

τ the certainty equivalent of the liability Yτ considered as separated from the others and

assume now that Y
′

τ is not determined as a risk-neutral expectation. We can write:

Y
′

τ := Y τ + γ′
τ ,
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where γ′
τ is a non-negative stand-alone risk loading, defined by some specified valuation

principle. Correspondingly the required reserve is defined as:

R∗
0 := M0 + λ0 ,

where λ0 is the positive risk margin provided by the same valuation principle. Referring to
the r.v. D representing the sum of the discounted liabilities, we can also interpret R∗

0 as

the certainty equivalent D (to be paid at time t = 0) of the total discounted liabilities D.
However the following inequality usually holds:

λ0 ≤
T∑

τ=1

vτ γ′
τ , (1.45)

as a consequence of typical risk diversification effects. This subadditivity property is well-
known in classical portfolio theory, where the risk margins are specified as σ-affine functions.
But (1.45) is also valid for more general risk margin definitions, as those based on quantiles or
expected shortfalls. Since the expectations are additive, relation (1.45) implies subadditivity
for the discounted certainty equivalents:

D ≤
T∑

τ=1

vτ Y
′

τ . (1.46)

In order to recover additivity some kind of allocated risk loading γτ should be defined,
characterized by the property (1.44). These risk loadings must be derived by specifying a
conventional rule for allocating the total risk λ0 to the single components Yτ . Given the
allocated risk loadings, the certainty equivalent of Yτ in the portfolio is immediately defined

as Y τ := Y τ + γτ and the linearity property holds:

D =

T∑

τ=1

vτ Y τ , (1.47)

as with the risk-neutral measure approach.
Usually stochastic models for P&C liabilities provide assessments of both the stand-alone

risk loadings γ′
τ and of the overall risk margin λ0. Thus the correct value of the overall

certainty equivalent D can be readily computed, a measure of the diversification effect – if of

interest – being provided by the difference D−
∑

Y
′

τ . However typical actuarial models do not
provide the allocated risk margins, which can be specified only under additional assumptions
and/or by ad-hoc definitions.

As an example, for σ-affine risk margins the allocated risk loadings could be defined by the
marginal contribution of the Yτ component to the total risk margin λ0. This approach only
requires the specification of the covariance matrix between liabilities of different maturity,
which is usually provided by actuarial stochastic models.

An important case is when the certainty equivalents are defined as α-quantiles. In this
case the inequality (1.46) corresponds to:

Q
(α)
0 (D) ≤

T∑

τ=1

vτ Q
(α)
0 (Yτ ) . (1.48)
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where the quantiles Q
(α)
0 (Yτ ) are computed on the p.d. of the individual liabilities Yτ and

the overall quantile Q
(α)
0 (D) is computed on the aggregate distribution of the discounted

liabilities. The individual certainty equivalents Y τ “in the portfolio” can be defined specifying
the allocation fractions:

βτ :=
Y τ

Q
(α)
0 (D)

,

satisfying the property
∑T

τ=1 vτ βτ = 1. Hence the allocated certainty equivalents Y τ :=

βτ Q
(α)
0 (D) satisfy (1.47) by definition; the corresponding allocated risk loadings are:

γτ := βτ Q
(α)
0 (D) − Y τ . (1.49)

For example, the fractions βτ could be fixed as proportional to the expected liabilities:

βτ :=
Y τ∑T

τ=1 vτ Y τ

. (1.50)

or to the stand alone quantiles:

βτ :=
Q

(α)
0 (Yτ )

∑T
τ=1 vτ Q

(α)
0 (Yτ )

. (1.51)

An alternative definition could be obtained specifying βτ as the covariance allocation frac-
tions:

βτ :=

∑T
θ=1 vτvθ Cov0(Yτ , Yθ)[∑T

k=1

∑T
θ=1 vkvθ Cov0(Yk, Yθ)

]1/2
. (1.52)

The definition of the allocated risk loadings is also useful for deriving approximated reserve
risk capitals, following the definitions provided in section 1.2.5. For example for quantile-
based risk margins the basic approximation (1.29) gives, using (1.49):

K0 = v1 W0(M
−
1 ) − M0 − v1

[
β1 Q

(α)
0 (D) − Y 1

]
. (1.53)

1.3 Using reserve risk capital for defining risk margins

1.3.1 The cost of risk capital

Under the iterative approach based on the one-year view, once the principle determining the
RAV has been chosen the corresponding reserve risk capital must be maintained in each year
during the whole run-off of the portfolio. We denoted by Kτ (τ = 0, 1, . . . , T − 1) the reserve
risk capital for the year starting at time τ . For τ > 0 the amount Kτ is a r.v. at time zero.
Let:

Kτ := E0(Kτ ) , τ = 0, 1, . . . , T − 1 ,

be the time zero expectation of Kτ . Obviously K0 = K0. Let hτ be the shareholders’ return
in year [τ, τ + 1], that is the rate of return required by the shareholders for investing in the
insurance business in the year starting at time τ . Moreover, let i(τ, τ + 1) be the one-year
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risk-free interest rate prevailing on the market at time τ . We define the cost of risk capital
at time zero as:

κ0 :=
T∑

τ=1

V(0; cτ ) ,

where:
cτ := [hτ − i(τ − 1, τ)]Kτ−1 , τ = 1, 2, . . . , T , (1.54)

is the expected net interest amount to be paid by the insurer at the end of the year τ .
Usually one assumes hτ ≡ h constant, known at time zero. Then it can be shown that

the arbitrage principle requires:

V(0; cτ ) = vτ [h − i(0, τ − 1, τ)]Kτ−1 , (1.55)

where i(0, τ − 1, τ) is the forward rate for the year τ which is implied by the current term
structure of interest rates (see eg [5], par. 12.4). Hence one has:

κ0 :=

T∑

τ=1

[h − i(0, τ − 1, τ)] vτ Kτ−1 . (1.56)

It is worthwhile to observe that this property also holds under interest rate uncertainty.
A typical approximation for κ0 is obtained assuming a deterministic and flat yield curve,

posing:
i(τ − 1, τ) ≡ i1 , (1.57)

where i1 is the current one-year risk-free interest rate. In this case one has V(0; cτ ) =
vτ (h − i1) Kτ−1.

More appropriately, also under interest rate uncertainty one can assume a constant spread:

s := hτ − i(τ − 1, τ) , τ = 1, 2, . . . , T .

Hence one has:

κ0 = s
T∑

τ=1

vτ Kτ−1 . (1.58)

Remark. In the Swiss Solvency Test a constant spread s = 6% is assumed.

The ongoing assumption

In many cases the expectations Kτ of future risk capitals are not readily obtainable. More-
over under the run-off assumption the next-year obligations V −

τ+1 are vanishing with τ but
can display increasing relative variability, thus providing unrealistic assessments of the risk
capital. When the existing business is assumed to be effectively continued at a steady level it
seems more realistic to susbstitute the expectations Kτ for τ > 0 in equations (1.54), (1.56)
with:

K̂τ := q M̂τ , (1.59)

where:

q :=
K0

M0
,
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and:

M̂τ :=
T∑

θ=τ+1

v(0, τ, θ)E0(Yθ) =
1

vτ

T∑

θ=τ+1

vθ Y θ .

This expression provides an “ongoing” assessment of future risk capitals obtained by assuming
in each year a constant proportion q between Kτ and the expectation of the corresponding
residual reserve. The definition can be adopted also for τ = 0, obviously assuming M̂0 = M0.

Under the ongoing assumption (1.59) on the future risk capitals and assuming a constant
spread s, the interest amounts falling due at time τ are:

cτ = s q M̂τ−1 =
s q

vτ−1

T∑

θ=τ

vθ Y θ , τ = 1, 2, . . . , T , (1.60)

and the expression (1.58) assumes the simple form:

κ0 =

T∑

τ=1

vτ cτ = s q

T∑

τ=1

vτ

vτ−1

T∑

θ=τ

vθ Y θ . (1.61)

1.3.2 Risk margins as the cost of risk capital

The cost of the reserve risk capital given by (1.61) can also be used for determining risk mar-
gins when indications from an efficient market are not available6. Since κ0 can be interpreted
as a kind of market consistent risk premium for the outstanding liability stream Y , if a better
risk margin assessment is not available one could assume κ0 as the market value margin for
the required reserve; that is:

λ0 = κ0 . (1.62)

Under the ongoing assumption the cost-of-capital approach has a simple and consistent
formulation. Comparing (1.44) and (1.61) the following expression for the risk loadings must
hold:

γτ = cτ = s q M̂τ−1 .

Of course the definition of risk capital K0 and the definition of risk margin must be consistent.
Under assumption (1.62) the first risk loading is given by:

γ1 = c1 = sK0 ;

then if we adopt the risk capital representation given by the YEE approximation (1.29), we
have:

K0 = v1 W0(M
−
1 ) − M0 − v1 sK0 ,

6A cost-of-capital approach has been applied by the authors in March 2005 for determining the risk margins
for technical risks in the life portfolios of a leading Italian insurance company. In this application the goal
was a market consistent assessment of the “Value of Business In Force” derived by properly discounting best
estimates of future profits provided by the outstanding policy portfolios. In this case the risk margins where
then expressed in terms of Risk Discount Margins, i.e. as excess return over the risk-free rate. Details can
be found in [7]. The cost of risk capital as a general rule for determining risk margins to be added to best
estimates of liabilities has been also proposed in [33]. This definition seems to correspond quite closely to the
definition of Market Value Margin for liabilities currently considered in the Swiss Solvency Test (see [23], [24],
[29]). See also [25] for a comparison of different approaches to insurance liability valuation.
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which gives:

K0 =
v1 W0(M

−
1 ) − M0

1 + v1 s
=

U0(v1 M−
1 )

1 + v1 s
. (1.63)

Hence under assumption (1.62) subtracting v1γ1 from the unanticipated value of discounted
year-end expectation M−

1 is the same as dividing it by (1 + v1 s).

Correspondingly, the market value margin has the explicit expression:

λ0 = s
K0

M0

T∑

τ=1

vτ M̂τ−1 .

that is:

λ0 =
s

1 + v1 s

v1 W0(M
−
1 ) − M0

M0

T∑

τ=1

vτ

vτ−1

T∑

θ=τ

vθ Y θ . (1.64)

This relation expresses the risk margin as the product of three items:

λ0 = ŝ û µ̂ , (1.65)

where:

· the “spread factor”:

ŝ :=
s

1 + v1 s
= s

1 + i1
1 + i1 + s

,

coinciding essentially with the spread s, provides an overall assessment of the market risk
premium (in terms of excess return) for investments in the insurance business;

· the “u factor”:

û :=
U0(M

−
1 )

E0(M
−
1 )

=
v1 W0(M

−
1 ) − M0

M0
,

gives the relative unanticipated year-end best estimate of the liabilities. It describes the
intrinsic variability of the liability stream Y , where the variability measure is conditional
to the prudentiality level fixed by the RAV specification;

· the “liability factor”:

µ̂ :=
T∑

τ=1

vτ M̂τ−1 ,

is a money amount which captures the maturity structure of the expected liabilities, given
the current term structure of interest rates.

Once the RAV W0(M
−
1 ) has been computed, only the expected liabilities and the current

risk-free discount factors are involved in expressions (1.63) and (1.64). The level of the interest
rate spread s has not great importance in determining the risk capital, but is of strategic
relevance for assessing the risk margin and thus the required reserve R∗

0.

The single-maturity case

If T = 1 one has:

M−
1 = Y1 , M0 = v1 Y 1 , λ0 = v1 c1 = v1 sK0 ;
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hence:

K0 =
v1

[
W0(Y1) − Y 1

]

1 + v1 s
, (1.66)

and:

λ0 = κ0 = s
v2
1

[
W0(Y1) − Y 1

]

1 + v1 s
. (1.67)

The required reserve is given by:

R∗
0 =

v1

1 + v1 s

[
Y 1 + v1 sW0(Y1)

]
, (1.68)

It is interesting to observe that in this case one has:

λ0 + K0 = v1 U0(Y1) ,

that is the present value of the unanticipated loss is expressed as the sum of the market value
margin and of the risk capital.

Other approximations

If the ϕ-discounted YEE approximation is adopted, expression (1.34) gives:

K0 =
W0(ϕ Z1) − ϕ L

1 + v1 s
=

ϕU0(Z1)

1 + v1 s
, (1.69)

and:

λ0 =
s

1 + v1 s

U0(Z1)

L

T∑

τ=1

vτ M̂τ−1 . (1.70)

Under the undiscounted YEE approximation (1.35) one has:

K0 =
U0(Z1)

1 + s
. (1.71)

If the discount factors are set equal to 1 also in the discounted expectations M̂τ one obtains:

λ0 =
s

1 + s

U0(Z1)

L

T∑

τ=1

τ Y θ . (1.72)

In the flat case one poses γ1 = 0, which is equivalent to drop the division by 1+ s. So we get:

λ0 = s
U0(Z1)

L

T∑

τ=1

τ Y θ . (1.73)

The corresponding expressions for the LM approximation are as follows. For the dis-
counted LM approximation (1.38):

K0 =
U0(D)

1 + v1 s
and λ0 =

s

1 + v1 s

U0(D)

M0

T∑

τ=1

vτ M̂τ−1 . (1.74)
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For the ϕ-discounted LM approximation:

K0 =
ϕU0(L)

1 + v1 s
and λ0 =

s

1 + v1 s

U0(L)

L

T∑

τ=1

vτ M̂τ−1 . (1.75)

For the undiscounted LM case:

K0 =
U0(L)

1 + s
and λ0 =

s

1 + s

U0(L)

L

T∑

τ=1

τ Y θ . (1.76)

The LM approximation in the flat case gives:

K0 = U0(L) and λ0 = s
U0(L)

L

T∑

τ=1

τ Y θ . (1.77)

1.3.3 A tabular representation of different approaches and approximations

It could be useful to summarize in tabular form the alternative methods and approximations
we considered for computing risk margins and risk capital. Table 1.1 reports in schematic
form three basic approaches to the definition of the required reserve, where the risk margins
are determined only by considering the p.d. of the “relevant random variable” (RRV), that
is the variable chosen to express the insurer’s obligations. We referred here to a required
reserve computed as a quantile, but the representation is valid referring to reserve defined as
any summary statistics of the RRV L or D.

In table 1.2 we summarize the four possible approximations in reserve risk capital compu-
tation under both the YEE approach and the LM approach. In this case we assume that the
risk margin λ0 in the required reserve, or at least the risk loading γ1 on the first-year liability
Y1, have been already defined in a previous stage. Hence the “U-correction” term, that is the
term correcting the unanticipated value U0 of the RRV, has been specified independently of
the risk capital valuation.

In table 1.3 we represent the same approaches assuming that both the reserve risk capital
and the risk margin are determined simultaneously, the risk margin λ0 being defined as the
cost κ0 of the risk capital. In all of the methods considered, once the RRV has been chosen
only the RAV W0 and the spread s have to be specified. The former provides the unan-
ticipated value of the RRV; the latter (which expresses the market price of risk) determines
the U-correction term (in this case a divisor) for deriving risk capital. The corresponding
risk margin is obtained as the product of the s-, u- and µ- factor, as in the representation
(1.65). The liability factor µ̂ is determined by discounted or undiscounted expected liabilities
depending on the approximation used.
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RRV D

exact method BE E0(D) = M0

(discounted) RR R∗ = Q
(α)
0 (D)

RM λ0 = Q
(α)
0 (D) − M0

RRV ϕ L

ϕ-discount BE ϕE0(L) = ϕ L = M0

approximation RR R∗ = ϕQ
(α)
0 (L)

RM λ0 = ϕQ
(α)
0 (L) − M0

RRV L

undiscounted BE E0(L) = L

approximation RR R∗ = Q
(α)
0 (L)

RM λ0 = Q
(α)
0 (L) − L

RRV: relevant random variable
BE: best estimate
RR: required reserve
RM: risk margin

Table 1.1: Required reserve and risk margin definition: exact and approximated methods
(R∗ as α-quantile)
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Method YEE approach LM approach

RRV v1 M−
1 D

RAV v1 W0(M
−
1 ) W0(D)

discounted BE v1 E0(M
−
1 ) = M0 E0(D) = M0

U-corr. −v1 γ1 −v1 γ1

RC v1 U0(M
−
1 ) − v1 γ1 U0(D) − v1 γ1

RRV ϕ Z1 ϕ L

RAV ϕW0(Z1) ϕW0(L)

ϕ-discount BE ϕE0(Z1) = M0 ϕE0(L) = ϕ L = M0

U-corr. −v1 γ1 −v1 γ1

RC ϕU0(Z1) − v1 γ1 ϕU0(L) − v1 γ1

RRV Z1 L

RAV W0(Z1) W0(L)

undiscount BE E0(Z1) = L E0(L) = L

U-corr. −γ1 −γ1

RC U0(Z1) − γ1 U0(L) − γ1

RRV Z1 L

RAV W0(Z1) W0(L)

flat BE E0(Z1) = L E0(L) = L

U-corr. 0 0

RC U0(Z1) U0(L)

Table 1.2: Risk capital valuation methods under YEE and LM approach: define RAV (risk
loading γ1 specified)
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Method YEE approach LM approach

RRV v1 M−
1 D

RAV v1 W0(M
−
1 ) W0(D)

BE v1 E0(M
−
1 ) = M0 E0(D) = M0

U-corr. /(1 + v1 s) /(1 + v1 s)

discounted RC v1 U0(M
−
1 )/(1 + v1 s) U0(D)/(1 + v1 s)

s-factor ŝ = s/(1 + v1 s) ŝ = s/(1 + v1 s)

µ-factor µ̂ =
∑T

τ=1 vτ M̂τ−1 µ̂ =
∑T

τ=1 vτ M̂τ−1

RM κ0 = ŝ
U0(M

−
1 )

E0(M
−
1 )

µ̂ κ0 = ŝ
U0(D)

E0(D)
µ̂

RRV ϕ Z1 ϕ L

RAV ϕW0(Z1) ϕW0(L)

BE ϕE0(Z1) = M0 ϕE0(L) = ϕ L = M0

U-corr. /(1 + v1 s) /(1 + v1 s)

ϕ-discount RC ϕU0(Z1)/(1 + v1 s) ϕU0(L)/(1 + v1 s)

s-factor ŝ = s/(1 + v1 s) ŝ = s/(1 + v1 s)

µ-factor µ̂ =
∑T

τ=1 vτ M̂τ−1 µ̂ =
∑T

τ=1 vτ M̂τ−1

RM κ0 = ŝ
U0(Z1)

E0(Z1)
µ̂ κ0 = ŝ

U0(L)

E0(L)
µ̂

RRV Z1 L

RAV W0(Z1) W0(L)

BE E0(Z1) = L E0(L) = L

U-corr. /(1 + s) /(1 + s)

undiscount RC U0(Z1)/(1 + s) U0(L)/(1 + s)

s-factor ŝ = s/(1 + s) ŝ = s/(1 + s)

µ-factor µ̂ =
∑T

τ=1

∑T
θ=τ Y θ µ̂ =

∑T
τ=1

∑T
θ=τ Y θ

RM κ0 = ŝ
U0(Z1)

E0(Z1)
µ̂ κ0 = ŝ

U0(L)

E0(L)
µ̂

RRV Z1 L

RAV W0(Z1) W0(L)

BE E0(Z1) = L E0(L) = L

U-corr. /1 /1

flat RC U0(Z1) U0(L)

s-factor ŝ = s ŝ = s

µ-factor µ̂ =
∑T

τ=1

∑T
θ=τ Y θ µ̂ =

∑T
τ=1

∑T
θ=τ Y θ

RM κ0 = s
U0(Z1)

E0(Z1)
µ̂ κ0 = s

U0(L)

E0(L)
µ̂

Table 1.3: Risk margin and risk capital valuation methods under YEE and LM approach
(define RAV and specify s)
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Chapter 2

Modelling P&C liabilities

2.1 Run-off triangles

In P&C insurance the OLL generated by a given portfolio of policies can be formally repre-
sented referring to the triangle of claim payments (paid losses) made up to the current date
t = 0. We assume that observations of past payments are referred to claims originated in the
time period [−n, 0], with n integer. Therefore data from the past n accident years (AY) are
available. It is convenient to assume the current date as the end of a calendar year; therefore
any accident year coincides with an accounting year and the valuation at time t = 0 can be
considered as being made at the end of the n-th of the just observed accounting years. In our
application t = 0 denotes the end of 2004. For any AY data are assumed to be organized by
development year (DY), which is the delay between the accident date and the payment date.

For notational convenience the indication of the valuation date will be dropped if unnec-
essary and the suffixes will be used to indicate accident years and development years.

2.1.1 Paid losses

Incremental paid losses

Let us denote by:
Ci,j , i = 1, . . . , n , j = 1, . . . , J ,

the incremental paid losses, i.e. the portfolio payments relative to claims originated in the
AY i and made in the DY j. In general J ≥ n. If J > n, the quantity:

T∞ :=
J∑

j=n+1

C1,j ,

i.e. the sum of the incremental losses originated in the oldest AY that are not yet observed,
represents the tail of the outstanding losses.

Let us assume for the moment that J = n. Hence T∞ = 0 and the effects of claims
originated in the first AY are completely observable at time zero; no provision is needed on
that date for this generation of liabilities. The paid losses Ci,j can now be arranged into an
n × n matrix; the elements on the diagonal, that is the elements:

Ci,j such that i + j = n + 1 ,
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are the payments made in the most recent calendar year [−1, 0). The payments such that
i + j ≤ n + 1 are made before the current date t = 0; they form the “past triangle”, which
is the set of the observed data. The elements of the “future triangle”, i.e. the Ci,j such that
i + j > n + 1, are random variables at time t = 0.

Cumulative paid losses

The cumulative paid losses are defined as:

Si,j =

j∑

k=1

Ci,k , i, j = 1, . . . , n .

It is useful to introduce a notation denoting, for each AY, the DY most recently observed.
For any k = 1, . . . , n, define the diagonal index as:

dk = n − k + 1 ;

the index dk is the column index of the diagonal element on the row k (or, equivalently, the
row index of the diagonal element on the column k). Thus the total payments made up to
time t = 0 for claims of the AY i are given by Si,di

.

The total payments up to time zero are given by:

S =
n∑

i=1

Si,di
.

2.1.2 Ultimate losses and outstanding losses

Ultimate losses

The ultimate losses are the cumulative paid losses on the latest DY; we have:

Ui = Si,n , i = 1, . . . , n , U =
n∑

i=1

Ui ,

where U is the total ultimate loss.

Outstanding Loss Liabilities

The outstanding loss liabilities (OLL) are the part of the ultimate loss that are not yet paid
at time t = 0, i.e.:

Li = Ui − Si,di
, i = 1, . . . , n , L =

n∑

i=1

Li .

Of course by the assumption J = n one has U1 = S1,n and L1 = 0.
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Ultimate loss reserve

If not otherwise stated all the probability assessments are assumed to be made based on the
information available at time t = 0. When conditioning on information at time t has to be
explicitly specified the suffix t will be used.

We shall denote by:

Li := E(Li) , i = 1, . . . , n ,

the expectation (at time t = 0) of the OLL originated in AY i. The expected value:

L =
n∑

i=1

Y i ,

is interpreted as the best estimate of the total future liabilities and is usually assumed as the
ultimate loss reserve of the outstanding portfolio. This definition does not include any explicit
risk margin, apparently assuming that the valuation on an undiscounted basis implicitly
provides an adequate risk loading. In order to obtain the more general definition of a required
reserve R∗ both discounting and appropriate explicit risk margins should be included.

2.1.3 Payments in future years

The decomposition by AY of total paid losses is convenient for applying efficient forecasting
methods of future liabilities. However it is not well suited for fair valuation, where the
maturity structure of the OLL must be specified.

Assuming that the payments are made at the end of each year, the amount Ci,j will fall
due after τ = j − di years from the date t = 0. Hence the sum:

Yτ :=

n∑

i=τ+1

Ci,di+τ , τ = 1, . . . , n − 1 ,

represents the total claims payment to be made at time τ (i.e. at the end of the accounting
year τ). Of course one has:

L =
n−1∑

τ=1

Lτ ,

that is the ultimate loss reserve can also be obtained summing by diagonal the expected value
of all future payments.

The diagonal payments Yτ describe the correct maturity structure of the OLL and are
suitable for providing required reserve definitions on a discounted basis, along the principles
introduced in section 1.2. Provided that an appropriate set {γτ ; τ = 1, . . . , n − 1} of market
risk loadings for the liabilities Yτ is defined, the fair value of the OLL is given by:

V =
n−1∑

τ=1

vτ (Y τ + γτ ) .

Under the FV assumption this expression provides the definition of the required reserve R∗.
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2.2 Reserve process and risk capital

Since all claim payments are assumed to be made at the end of each year, at the date t = 1
and immediately before (say at the end of the next year) the insurer’s obligations are given
by the claim losses:

Y1 =
n∑

i=2

Ci,di+1 , (2.1)

generated by the outstanding portfolio in the accounting year [0, 1), plus the reserve amount
R∗

1 representing the provisions for the remaining OLL. Of course, under the FV assumption
R∗

τ = Vτ (τ = 0, 1, . . . , n − 1) and the year-end obligations are V −
1 := Y1 + V1.

In the flat case (neither discounting nor risk margins) the reserve coincides with the
ultimate loss reserve, hence:

V0 = L and V1 =
n−1∑

τ=2

E1(Yτ ) ,

and we adopted the notation:

Z1 := V −
1 = Y1 +

n−1∑

τ=2

E1(Yτ ) =
n−1∑

τ=1

E1(Yτ ) .

In this case the reserve can be decomposed also by AY; that is we can write:

Z1 =
n∑

i=2

Ci,di+1 +
n−1∑

τ=2

n∑

i=τ+1

E1

(
Ci,di+τ

)
=

n∑

i=2

n∑

j=di+1

E1

(
Ci,j) .

This can also be written:

Z1 =
n∑

i=2

[
E1

(
Ui) − Si,di

]
= E1

(
U) − S ; (2.2)

hence in the flat case the r.v. expressing the year-end obligations can be expressed as the
expectation at t = 1 of the total ultimate losses minus the cumulative paid losses at time
t = 0. Obviously E0(Z1) = E0

(
U) − S = L.

As concerning measures of reserve risk capital all the definitions discussed in section 1.2
can be adopted and the corresponding formulas can be applied, provided that the terminal
payment date T is specified as n− 1, which is the last accounting year in the future triangle.
Of course the traditional decomposition by AY of the relevant quantities will be viable only
if the linearity property holds, that is only in the flat case.

2.3 Run-off techniques for P&C liabilities

Run-off techniques for P&C claims reserving are forecasting methods based on the assump-
tions that there is a consistent pattern in the past claim experience. These methods can be
qualified as deterministic. They produce a point estimate of the ultimate losses Li projecting
into the future the development of claims payments observed in the past triangle, without
specifying any underlying probabilistic assumption.
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2.3.1 The chain-ladder algorithm

The development factors

The chain-ladder method is probably the most popular run-off technique. For i = 2, . . . , n,
it provides an estimate of the future cumulative paid losses by the projection rules:

{
Ŝi,di+1 = Si,di

λdi
,

Ŝi,j+1 = Ŝi,j λj , j = di + 1, di + 2, . . . , n − 1 ,
(2.3)

where the factors λj are the individual development factors (or individual link ratios) defined
as:

λj =

∑dj−1
i=1 Si,j+1

∑dj−1
i=1 Si,j

, j = 1, . . . , n − 1 . (2.4)

The cumulative development factors Λj are the development factors from the DY j on, that
is:

Λj =
n−1∏

k=j

λk , j = 1, . . . , n − 1 . (2.5)

By this definition the cumulative paid losses at the latest DY can be expressed starting from
the current cumulative payments:

Ŝi,n = Si,di
Λdi

, i = 1, 2, . . . , n .

Hence the estimated ultimate losses are given by:

Ûi = Ŝi,n , i = 1, 2, . . . , n , Û = S1,n +

n∑

i=1

Ûi ,

and the estimated OLL are:

L̂i = Ûi − Si,di
, i = 1, 2, . . . , n , L̂ =

n∑

i=1

L̂i .

Obviously L̂1 = 0 since under the assumption J = n one has Û1 = Ŝ1,n = S1,n.

Remark. Definitions (2.4) and (2.5) can be obviously extended up to DY n posing Λn :=
λn := 1.

Including the tails

If the assumption J = n is relaxed the estimated ultimate losses must be incremented to take
into account the positive tail T∞. A viable approximation of the estimation problem can be
obtained substituting the incremental paid loss C1,n by:

C+
1,n := C1,n + ∆1 ,

where ∆1 is an exogenous estimate of T∞, and assuming again J = n. Hence one is led to a
square-matrix problem and all the previous definitions apply under suitable adjustments. In
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particular, since the cumulative payment S1,n is substituted by S+
1,n := S1,n + ∆1, the latest

cumulative development factor to be considered is given by:

Λn := λn :=
S+

1,n

S1,n
= 1 +

∆1

S1,n
.

All the estimated ultimate losses Ûi are then modified by the factor Λn; one has:

Û+
i = Ûi Λn , i = 1, . . . , n , Û+ = Û Λn .

Of course the OLL are derived referring to the claims actually paid, that is:

L̂+
i = Û+

i − Si,di
, i = 1, . . . , n , L̂+ =

n∑

i=1

L̂+
i .

Similarly, the future-years payoffs are given by:





Ŷ +
1 = ∆1 + Ĉ+

2,n +
n∑

i=3

Ĉi,di+1 ,

Ŷ +
τ = Ĉ+

τ+1,n +
n∑

i=τ+2

Ĉi,di+τ , τ = 2, . . . , n − 1 ,

where Ĉ+
i,j are the incremental payments estimated applying the chain-ladder algorithm to

the past triangle where S1,n is substituted by S+
1,n.

2.4 Stochastic reserving models

Traditional run-off techniques are not able to provide risk margin and risk capital measures
since they produce only point estimates, without any assessment of the OLL variability.
The natural way to obtaining risk measures is to derive the full probability distribution of
future claim payments, or at least to add the estimate of a second order moment to the OLL
point estimate. In recent years a number of stochastic models has been proposed in general
insurance, extending the traditional deterministic techniques and providing a probabilistic
representation of the OLL. In this analysis we used two of the most popular stochastic models,
suitable to be applied to our triangles of paid losses data. Both of these models can be
considered as a stochastic extension of the chain-ladder method, providing expected values
identical to the projected values given by the classical deterministic approach.

Before presenting the models some general considerations are in order concerning measures
of variability in statistical modelling.

2.4.1 Variability of OLL under stochastic models

In a stochastic framework claim reserving is a predictive process, where forecasts of future
claims are derived based on the observed data. It is important to observe that in this
predictive process the full variability of the OLL includes both the inherent variability in the
data being forecast and the uncertainty in parameters estimation. Let us refer, for example,
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to the random variable L representing the overall OLL. Estimating a suitable stochastic
model for L on data on the past triangle a “predicted value” L̂ will be obtained representing
an estimate of E(L). Under classical statistical methods the “true value” of E(L) is unknown
and given that the data are considered a random observation sample, the estimator L̂ is a
random variable also. Thus the variability of L̂ includes both the variability of the r.v. L and
the variability of the estimate. We are interested in the total variability, i.e. in the prediction
variance (or (squared) prediction error) of L̂, which is defined as:

Pvar(L̂) := E
[(

L − L̂
)2

]
.

Typically an approximation of the prediction variance is obtained assuming unbiasedness
(i.e. E(L) = E(L̂)) and independence between past observations and future observations
(e.g. see [21]). The following decomposition holds:

Pvar(L̂) ≈ Var(L) + Evar(L̂) , (2.6)

where:

Evar(L̂) := Var(L̂) = E
[(

L̂i − E(L̂)
)2

]
, (2.7)

is the estimation variance (or (squared) estimation error). In this decomposition the variance
of L:

Var(L) := E
[(

L − E(L)
)2

]
, (2.8)

is usually referred to as the process variance (or (squared) process error). Of course the
prediction error and the estimation error are defined as the corresponding standard deviations:

Pstd(L̂) :=

√
Pvar(L̂) , Estd(L̂) :=

√
Evar(L̂) . (2.9)

2.5 The Distribution Free stochastic Chain-Ladder (Mack’s
model)

The “distribution free stochastic chain-ladder” (DFCL) suggested by Mack in 1993 [30] as-
sumes that the payments of different AY are independent and the conditional mean and
variance of the cumulative payments Si,j are, respectively:

E
(
Si,j |Si,j−1

)
= λj−1 Si,j−1 , Var

(
Si,j |Si,j−1

)
= ω2

j−1 Si,j−1 , (2.10)

where λj and ωj (j = 1, 2, . . . , n − 1) are unknown parameters.

2.5.1 The parameter estimators

The parameters λj−1 are the individual development factors of the model and must be esti-
mated, together with the standard deviation factors ωj−1, from observed data. As shown by

Mack, the estimators λ̂j−1 of the development factors are the analogous of the chain-ladder
estimators:

λ̂j−1 =

∑dj

i=1 Si,j
∑dj

i=1 Si,j−1

, j = 1, . . . , n . (2.11)
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Moreover the appropriate estimators of ω2
j−1 are give by:

ω̂2
j−1 :=

1

n − j

dj∑

i=1

Si,j−1

(
Si,j

Si,j−1
− λ̂j−1

)2

, j = 1, 2, . . . , n − 1 ; (2.12)

for data on a triangular array the estimator of the latest parameter ω2
n−1 can be fixed as:

ω̂2
n−1 := min

(
ω̂4

n−2

ω̂2
n−3

, ω̂2
n−3

)
.

2.5.2 Prediction errors of the OLL

OLL of a single accident year

The estimated values of λj−1 provide the corresponding estimate L̂i of the OLL. For the
ultimate losses one has:

Ûi = Êt(Ui) = Si,di
Λ̂di

;

hence for the OLL one obtains:

L̂i = Ûi − Si,di
= Si,di

(
Λ̂di

− 1
)
.

Since the full predictive distribution is not provided by the model we consider the vari-
ability expressed by the prediction variance of L̂i:

Pvar(L̂i) := E
[(

Li − L̂i

)2
]
.

Obviously the prediction variance of L̂i is equal to the prediction variance of Ûi, since the
cumulative payments Si,di

are known at time t.

As usual the prediction variance can be approximated as the sum of the estimation vari-
ance and the process variance:

Pvar(L̂i) ≈ Evar(L̂i) + Var(Li) .

Mack produces explicit expressions of both the components of the prediction variance Pvar(L̂i).
A correction for the expression of the estimation variance is given in [3].

Overall OLL

A crucial point is the derivation of the prediction error of the overall liabilities L̂ which is
usually of interest in the actuarial practice. The r.v.s Si,j corresponding to different AY are

independent by assumption. However the prediction variance of L̂ cannot be obtained as
the sum of the single prediction variances Pvar(L̂i) of the single AY liabilities. A correct
expression for Pvar(L̂) can be found in [3]. In the same paper and in [34] the appropriate
expressions can also be found of the prediction errors of the estimators Ŷτ of future years
payments, which are of interest in our applications.
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Quantiles from lognormal assumption

Since the Mack model is distribution free, additional assumptions are needed if the compu-
tation of summary statistics of the OLL different from the first two moments are required.
In order to derive quantiles and expected shortfalls of the OLL we assume a lognormal dis-
tribution with mean and variance equal to L̂ and Pvar(L̂), respectively.

2.6 The Over-Dispersed Poisson Model

In the “over-dispersed Poisson” (ODP) model [35] the incremental paid losses Ci,j are inde-
pendent over-dispersed Poisson r.v.s, with mean and variance given by:

E(Ci,j) = mi,j , Var(Ci,j) = φmi,j , i, j = 1, . . . , n ,

where:
mi,j := xi yj ,

with xi, yj , φ > 0, and:
n∑

k=1

yk = 1 .

Since:

E(Ui) =
n∑

j=1

E(Ci,j) =
n∑

j=1

xi yj = xi , (2.13)

one can see that the “row parameter” xi represents the expected ultimate loss of the AY i.
Moreover the “column parameter”:

yj ≡
E(Ci,j)

E(Ui)
,

represents the proportion of the expected ultimate loss to emerge in the DY j for any AY .

The ODP model and the chain-ladder algorithm

In [37] it is shown that, under the ODP assumption (and some suitable additional conditions),
the maximum likelihood estimators λ̂j of the individual development factors can be obtained
by the maximum likelihood estimates ŷj of the column parameters:

λ̂j =

∑j+1
k=1 ŷk∑j
k=1 ŷk

, j = 1, . . . , n − 1 .

This relations provide the same development factors given by (2.4). Thus the chain-ladder
technique can be viewed as a method for deriving maximum likelihood estimates which are
consistent with the ODP model. So if one considers the chain-ladder as an acceptable pro-
jection method, then one can consistently assume the ODP model to describe the stochastic
nature of the paid losses1. As for the DFCL, the chain-ladder projections can be considered
as the expectations provided by the stochastic model.

1Some controversies have been roused discussing which stochastic model exactly underlies the chain-ladder
technique. See [37], [31], [38] and [21] for a discussion of this point.
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2.6.1 The ODP model as a generalized linear model

For estimation purposes the ODP model can be reparameterised posing:

log(mi,j) := ηi,j ,

ηi,j := c + αi + βj , α1 = β1 = 0 .
(2.14)

Thus a generalized linear model (GLM) is assumed where the response is modelled by a
logarithmic link function and the variance is proportional to the mean through the scale
parameter φ. Such a model can be easily estimated using standard software, which provides
both the estimators η̂i,j and the estimation variances Var(η̂i,j). The estimates of incremental
paid losses are:

Ĉi,j = m̂i,j := eη̂i,j . (2.15)

It can be shown (see [21] for example) that the corresponding prediction variance can be
approximated as:

Pvar(Ĉi,j) ≈ φ Ĉi,j + m̂2
i,j Var(η̂i,j) . (2.16)

Prediction errors of the OLL

For determining the prediction variance of the liabilities Li from each AY and of the overall
liabilities L the appropriate covariance terms Cov(Ĉi1,j1 , Ĉi2,j2) must be taken into account.
Proceeding as with the variance terms, the covariances can be approximated as:

Cov(Ĉi1,j1 , Ĉi2,j2) ≈ m̂i1,j1 m̂i2,j2 Cov(η̂i1,j1 , η̂i2,j2) . (2.17)

Thus they can be directly computed if the covariance matrix of the parameter estimates η̂i,j

is available from the software package used to estimate the GLM model.

2.6.2 Deriving full predictive distributions by simulation

Obviously the first two moments of L give only limited information on the probability distri-
bution of the OLL, which is required if other summary statistics, such as measures of skewness
or extreme percentiles are also of interest. In order to derive the full predictive distribution
of the possible OLL outcomes under the ODP model we used a simulation procedure. In
this approach the variability of the estimates is simulated by bootstrapping the residuals
on the fitted values provided by the chain-ladder technique. The variability given by the
process variance is generated by adding to the projected incremental paid losses a random
error sampled from an (approximated) ODP distribution. This approach was first used by
[20] and [19].

It is worthwhile to observe that the simulation procedure produces an empirical predictive
distribution for each incremental payment Ci,j in the future triangle. Thus the predictive
distribution of the liabilities Li from each AY, of the payoffs Yτ in each future accounting
year and the overall liabilities L =

∑n
i=2 Li =

∑n−1
τ=1 Yτ are immediately obtained aggregating

the simulated incremental paid losses by row, by diagonal and over the entire future triangle,
respectively. The distribution of the discounted liabilities vτ Yτ and of the total discounted
liabilities D =

∑n−1
τ=1 vτ Yτ can also be obtained by the same method. With this procedure

the diversification effects at different aggregation levels, i.e. across individual paid losses,
across accident years or across accounting years, are naturally accounted for.
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Measuring risk capital by simulation

The bootstrapped simulation procedure also allows to derive reliable measures of risk capital.
As shown in section 1.2.6, in order to calculate the current year risk capital K0 under the
YEE approach the distribution of the year-end insurer’s obligations

M−
1 = Y1 + M1 = Y1 +

1

v1

n−1∑

τ=2

vτ E1(Yτ ) ,

is required. Since the chain-ladder provides consistent estimates of the expected future pay-
ments under the ODP model, the year-end expectations E1(Yτ ) are readily derived in each
iteration enlarging the past triangle with the simulated paid losses in the next-year diagonal
and then applying the chain-ladder algorithm to this updated triangle. The collection of
the estimated expectations and of there discounted values produced in each iteration pro-
vides the empirical distribution of the year-end obligations, in both the undiscounted and the
discounted case.

This approach to the risk capital computation under the YEE method was introduced in
[13] which is also referred to for technical details. Of course risk capital measures defined
with the LM approach, also described in section 1.2.6, are directly derived by the empirical
distribution of the discounted and undiscounted liabilities Yτ .
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Part II

Analysis of market data
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Chapter 3

The data

3.1 Original data

The analysis considered data on claim experience on Motor Third Party Liability (MTPL)
from 55 Italian insurance companies, referring to accounting years from 1995 to 2004 (the
“current calendar year”). In terms of statutory reserve these companies represented about
the 98% of the total MTPL Italian market as of 2004. The main informations used were
data on number of paid claims, claim payments (paid losses) and statutory reserves. In each
accounting year (“calendar year”, CY) data were organized by year of occurrence (“accident
year”, AY). For accounting years 1995 to 1999 only data for accident years starting from 1995
were available. From accounting year 2000 on, reported data included claims occurred in the
previous 11 years; hence for CY n = 2000, . . . , 2004 data from AY n − 11 were available.
Defining the “development year” (DY) as the difference DY := CY − AY + 1, data for
CY = 1995, . . . , 1999 contained figures for DY 1, . . . , 5, respectively; for CY ≥ 2000 data
referred to DY ≤ 12 were available.

If data are organized under the usual array AY/DY (using AY as the row index and DY as
the column index), a complete triangular array can be obtained only starting from AY 1995.
The triangle from AY 1989 is incomplete, since data for AY 1989 to 1994 are not available
for the early DY.

Given that the most popular run-off techniques (as the chain-ladder method) are well-
suited for the application to complete triangular (or trapezoidal) data arrays, in a first step
the analysis has been performed using only data from AY 1995. Cutting data at AY = 1995
implies that only observations for up to 10 development years are considered. The information
on accident years prior to 1995 suggests however that the typical run-off period is longer than
10 years and a tail must then be added to the cut data; as tail value the level of statutory
reserve fixed by each company for claims originated in 1995 has been chosen.

3.2 Reduction of the data sample

In a first application of the stochastic reserving models only triangles of paid losses have
been used. Not all the available data were well suited to be analysed by chain-ladder type
methods. A typical problem is that for new companies the time series of data can be too
much short, and the payments are typically fast growing. Moreover in some cases data can
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be incomplete or contain evident errors. To enable a comparison of results across different
companies, we considered only complete triangles containing reliable paid losses data from
the latest 10 accident years. Hence 15 companies have been excluded from the analysis. In
term of statutory reserve these companies represented only the 4.4% of the total reserve of
the complete sample of 55 companies. The statutory reserve of the 40 companies considered
in the analysis totalized at about the 93% of the overall MTPL market reserve as of the end
of 2004.

In this report data on statutory reserve have been disclosed on an aggregate basis, group-
ing the companies of the selected sample in four dimensional classes determined by the amount
of Rs. The classification is specified in table 3.1, where figures are expressed in million Euros.

Class Statutory reserve n. co. Total reserve

1 1, 000 ≤ Rs 9 15,114.43
2 250 ≤ Rs < 1, 000 15 7,257.39
3 50 ≤ Rs < 250 13 1,541.70
4 0 ≤ Rs < 50 3 128.45

total 40 24,041.97

Table 3.1: Classification of companies of the selected sample by statutory reserve
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Chapter 4

Applying the stochastic models to
historical paid losses triangles

In a first step the ODP and the DFCL model have been applied to the ten-year triangles of
paid losses of the companies in the selected sample. The ODP model have been applied with
the bootstrap method with 10000 simulations, producing the full predictive distribution of
each of the payed losses Ci,j in the future triangles. By aggregation the distributions have
been derived both of the OLL Li by accident year and of the future payments Yτ by accounting
year, as well as of the total OLL L =

∑n
i=1 Li =

∑n−1
τ=1 Yτ . The predicted values and the

prediction squared errors (as the sum of the process errors and the estimation errors) for the
same quantities have been computed under the Mack’s model using closed form expressions.
The full distribution of L has been derived making the additional assumption that the overall
OLL are lognormally distributed.

To simplify notations we shall usually omit the symbol “̂” which denotes the predicted
value of the random variables. We emphasize however that all the probability distribution
considered in the sequel both under the ODP and the DFCL model, have to be considered
of predictive type, including both process uncertainty and estimation uncertainty.

As stochastic extensions of the deterministic chain-ladder, the ODP and the Mack’s model
should provide identical values of the expected OLL L. However, since the ODP model is
applied with a Monte Carlo procedure all figures produced by this model will be affected by a
random error (Monte Carlo error). In particular the sample mean L̃ computed on the overall
distribution of the simulated OLL will be slightly different from the theoretical chain-ladder
value L. In the selected sample the average of the percentage difference (L̃ − L)/L over the
10000 simulations resulted of about 0.13%, with a minimum value of −0.99% and a maximum
of 0.99%. For a better comparison between results obtained with the two models all the OLL
figures produced by simulation under the ODP model (both discounted and undiscounted)
have been adjusted for the Monte Carlo error subtracting the difference (L̃ − L). When
applied to L̃ this adjustment will obviously provide a sample mean of L exactly equal to the
chain-ladder mean L, by construction.

In the valuations provided by the two models the theoretical value L has ben often used as
the reference level, the monetary amounts concerning any individual company being usually
expressed in percent of the company-specific value of L.
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4.1 First results for undiscounted liabilities

4.1.1 Required reserve as undiscounted mean and undiscounted quantile

Some preliminary results by the ODP model are provided in table 4.1. For each selected
company we reported:

· the class of statutory reserve;
· the coefficient of variation of L (in percent):

Cv(L) :=
Pstd(L)

L
;

· the 75-th, 90-th and 95-th quantile, Q(75)(L), Q(90)(L) and Q(95)(L), of L (in percent of
L).

The companies in the table are sorted by increasing values of Cv(L). The corresponding
order number has ben adopted as company-specific code number; it is denoted by “CodCv”
and will be maintained during all the analysis.

The analogous quantities have been derived by the DFCL model and are reported in table
4.2. Also in this case the companies are sorted by CodCv code, hence by increasing value of
the ODP variability; the comparison between the corresponding values of Cv(L) in the two
tables shows that the relation between the coefficients of variation provided by the ODP and
the DFCL model in the sample is not monotonic.

4.1.2 Risk margins from quantiles

Referring to the undiscounted OLL, for any definition of the required reserve R∗ a risk margin
δ is obtained as the difference:

δ := R∗ − L ;

therefore definitions of required reserve that are more conservative than the sample mean im-
ply a positive risk margin. In figures 4.1 and 4.2 the risk margins provided by the two models
are illustrated assuming the 75-th, 90-th and 95-th quantile of L as the required reserve.
The companies are sorted by CodCv (hence by increasing values of the ODP coefficient of
variation) and the figures are expressed as a percentage of the chain-ladder sample mean:

RM(α) :=
Q(α)(L) − L

L
,

with α = 75, 90, 95%. The RM values at the three different confidence levels are represented
with dots joined by solid line, dashed line and dotted line, respectively and are reported on
the left vertical axis. A conventional value of statutory reserve for each dimensional class
has been defined, attributing the symbolic value of 1500, 500, 100 and 50 to class 1, 2, 3 and
4, respectively. These conventional values are also reported on the right vertical axis in the
figures and represented by vertical bars.

Of course the risk margins under the DFCL model are directly influenced by the lognor-
mality assumption.
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CodCv Class Cv(L) Q(75)(L) Q(90)(L) Q(95)(L)
(%) (%L) (%L) (%L)

1 1 3.51 102.37 104.52 105.85
2 1 4.53 103.05 105.81 107.35
3 1 4.70 103.18 106.03 107.78
4 1 4.77 103.05 106.26 108.25
5 2 4.87 103.28 106.36 108.19
6 2 5.08 103.41 106.74 108.51
7 1 5.19 103.40 106.71 108.67
8 1 6.10 103.95 107.80 110.22
9 2 6.22 104.11 107.94 110.63

10 1 6.50 104.28 108.36 110.92
11 1 6.82 104.18 109.08 112.18
12 2 6.97 104.67 109.18 111.89
13 2 7.35 104.90 109.74 112.48
14 2 7.59 105.09 109.86 112.78
15 2 7.64 105.25 109.82 112.55
16 2 7.66 105.10 109.79 112.73
17 2 7.75 104.95 110.24 113.46
18 3 8.04 105.28 110.33 113.48
19 2 8.85 105.62 111.73 115.67
20 3 9.34 106.12 112.22 115.91
21 2 9.42 105.88 112.45 116.74
22 2 9.56 106.12 112.30 116.40
23 2 9.87 106.60 112.86 116.36
24 2 10.03 106.50 113.25 117.03
25 3 10.14 106.26 113.39 117.76
26 3 10.71 106.88 114.20 118.61
27 3 10.89 106.96 113.99 118.42
28 3 11.69 107.24 115.31 120.78
29 3 11.77 107.50 114.88 119.37
30 3 12.07 107.74 115.62 120.34
31 3 12.36 107.41 115.54 120.99
32 3 12.94 108.67 117.03 122.57
33 4 14.34 109.17 118.48 124.53
34 1 14.37 108.75 119.47 126.44
35 2 14.98 109.06 118.02 124.40
36 3 15.34 109.88 119.83 125.68
37 3 15.90 110.25 120.85 127.75
38 4 19.25 112.10 125.44 134.30
39 4 20.18 111.91 126.71 136.26
40 3 24.17 114.97 132.41 143.52

average 9.99 106.38 113.01 117.19

Table 4.1: ODP model – Summary statistics of the predictive distribution of L
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CodCv Class Cv(L) Q(75)(L) Q(90)(L) Q(95)(L)
(%) (%L) (%L) (%L)

1 1 2.59 101.73 103.34 104.32
2 1 4.00 102.65 105.17 106.71
3 1 4.26 102.82 105.51 107.16
4 1 3.68 102.45 104.76 106.17
5 2 3.40 102.26 104.39 105.68
6 2 3.46 102.30 104.47 105.79
7 1 3.99 102.65 105.17 106.70
8 1 4.70 103.11 106.09 107.92
9 2 4.96 103.27 106.42 108.36

10 1 4.74 103.13 106.15 107.99
11 1 4.36 102.88 105.64 107.32
12 2 5.63 103.71 107.31 109.53
13 2 5.69 103.74 107.39 109.63
14 2 4.81 103.17 106.23 108.10
15 2 5.79 103.81 107.52 109.81
16 2 6.02 103.95 107.82 110.20
17 2 8.50 105.51 111.08 114.56
18 3 5.37 103.54 106.97 109.08
19 2 5.58 103.67 107.24 109.44
20 3 5.55 103.65 107.20 109.39
21 2 5.86 103.85 107.61 109.92
22 2 6.20 104.07 108.05 110.51
23 2 7.27 104.74 109.46 112.39
24 2 8.21 105.33 110.71 114.05
25 3 6.39 104.19 108.30 110.84
26 3 9.55 106.15 112.48 116.44
27 3 9.19 105.93 112.00 115.79
28 3 9.64 106.21 112.60 116.60
29 3 6.67 104.37 108.68 111.34
30 3 9.83 106.32 112.84 116.94
31 3 7.47 104.87 109.73 112.74
32 3 7.62 104.96 109.93 113.01
33 4 7.74 105.03 110.08 113.21
34 1 8.47 105.49 111.05 114.52
35 2 13.97 108.77 118.35 124.48
36 3 16.73 110.33 122.03 129.63
37 3 19.94 112.04 126.31 135.71
38 4 12.36 107.84 116.21 121.52
39 4 9.96 106.41 113.02 117.18
40 3 10.66 106.83 113.94 118.43

average 7.27 104.69 109.48 112.48

Table 4.2: DFCL model – Summary statistics of the predictive distribution of L (lognormal
assumption)
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Figure 4.1: Risk margins from percentiles under the ODP model

Figure 4.2: Risk margins from percentiles under the DFCL model (lognormal assumption)

61



4.1.3 OLL variability under the two models

As concerning the OLL variability a comparison between the two models is provided in table
4.3 where we reported the relative differences (in percent) between the values of Cv, defined
as:

∆Cv :=
CvDFCL(L) − CvODP(L)

CvODP(L)
.

The values of ∆Cv are negative for nearly all of the companies in the sample, indicating that
the ODP model is more conservative than the Mack’s model in terms of variability. In the
same table we also reported the relative differences (in percent) between quantiles:

∆Q(α) :=
Q

(α)
DFCL(L) − Q

(α)
ODP(L)

Q
(α)
ODP(L)

,

and the percentage differences between risk margins:

∆RM(α) :=
Q

(α)
DFCL(L) − Q

(α)
ODP(L)

Q
(α)
ODP(L) − L

,

for α = 75, 90, 95%. Of course a comparison between quantiles is influenced by the additional
lognormality assumption introduced in the Mack’s model. However also for the coefficients
of variation the differences are negative for almost all the companies.

In table 4.4 some elementary statistics on ∆Cv, ∆Q(α) and ∆RM(α) across the selected
sample are reported.
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CodCv Class ∆Cv ∆Q(75) ∆Q(90) ∆Q(95) ∆RM(75) ∆RM(90) ∆RM(95)

(%) (%) (%) (%) (%) (%) (%)

1 1 -26.22 -0.63 -1.13 -1.45 -27.17 -26.16 -26.17
2 1 -11.80 -0.39 -0.61 -0.60 -13.23 -11.06 -8.79
3 1 -9.29 -0.35 -0.48 -0.58 -11.26 -8.51 -8.02
4 1 -22.68 -0.59 -1.41 -1.92 -19.85 -23.94 -25.15
5 2 -30.24 -0.99 -1.85 -2.31 -31.24 -30.98 -30.57
6 2 -31.86 -1.08 -2.13 -2.50 -32.63 -33.69 -31.93
7 1 -23.06 -0.73 -1.44 -1.81 -22.13 -22.96 -22.72
8 1 -22.90 -0.81 -1.58 -2.09 -21.38 -21.88 -22.52
9 2 -20.33 -0.80 -1.41 -2.05 -20.37 -19.13 -21.37

10 1 -26.99 -1.10 -2.04 -2.64 -26.80 -26.46 -26.81
11 1 -36.10 -1.24 -3.16 -4.33 -31.01 -37.92 -39.87
12 2 -19.20 -0.93 -1.71 -2.11 -20.72 -20.34 -19.86
13 2 -22.59 -1.10 -2.14 -2.53 -23.61 -24.15 -22.84
14 2 -36.71 -1.82 -3.31 -4.16 -37.63 -36.84 -36.68
15 2 -24.21 -1.37 -2.09 -2.44 -27.47 -23.39 -21.85
16 2 -21.38 -1.09 -1.80 -2.24 -22.50 -20.20 -19.87
17 2 9.64 0.53 0.77 0.97 11.31 8.26 8.20
18 3 -33.20 -1.66 -3.05 -3.88 -33.00 -32.54 -32.68
19 2 -36.96 -1.84 -4.02 -5.39 -34.67 -38.29 -39.79
20 3 -40.52 -2.32 -4.47 -5.63 -40.30 -41.06 -40.99
21 2 -37.77 -1.91 -4.31 -5.84 -34.49 -38.92 -40.73
22 2 -35.16 -1.94 -3.78 -5.06 -33.56 -34.55 -35.91
23 2 -26.30 -1.75 -3.01 -3.41 -28.17 -26.43 -24.25
24 2 -18.14 -1.09 -2.24 -2.55 -17.95 -19.18 -17.50
25 3 -37.04 -1.96 -4.49 -5.87 -33.18 -37.99 -38.96
26 3 -10.83 -0.68 -1.51 -1.83 -10.61 -12.14 -11.66
27 3 -15.63 -0.96 -1.75 -2.22 -14.76 -14.24 -14.25
28 3 -17.53 -0.96 -2.35 -3.46 -14.24 -17.69 -20.11
29 3 -43.30 -2.91 -5.40 -6.73 -41.76 -41.70 -41.45
30 3 -18.61 -1.31 -2.40 -2.83 -18.28 -17.75 -16.74
31 3 -39.59 -2.37 -5.04 -6.81 -34.34 -37.43 -39.29
32 3 -41.08 -3.41 -6.07 -7.80 -42.75 -41.70 -42.36
33 4 -46.04 -3.79 -7.09 -9.09 -45.12 -45.46 -46.14
34 1 -41.04 -2.99 -7.05 -9.43 -37.21 -43.24 -45.09
35 2 -6.74 -0.26 0.29 0.07 -3.16 1.87 0.35
36 3 9.10 0.41 1.84 3.14 4.54 11.11 15.38
37 3 25.45 1.62 4.52 6.23 17.44 26.17 28.69
38 4 -35.79 -3.80 -7.36 -9.51 -35.21 -36.29 -37.24
39 4 -50.63 -4.92 -10.80 -14.00 -46.20 -51.23 -52.62
40 3 -55.91 -7.08 -13.95 -17.48 -54.40 -56.98 -57.66

Table 4.3: ODP vs DFCL model: percentage differences in variability measures (DFCL:
lognormal assumption)
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minimum maximum average std

∆Cv -55.91 25.45 -25.73 16.49
∆Q(75) -7.68 1.07 -1.68 1.63
∆Q(90) -14.43 3.99 -3.13 3.27
∆Q(95) -17.91 5.73 -3.95 4.23

∆RM(75) -59.41 12.31 -26.83 15.80

∆RM(90) -59.29 23.26 -26.41 17.12

∆RM(95) -59.38 26.50 -26.28 17.88

Table 4.4: ODP vs DFCL model: summary statistics of percentage differences in variability
measure

4.1.4 Measures of reserve adequacy on undiscounted basis

Appropriate measures of reserve adequacy can be derived for each company in the sample
by comparing the level R∗ of the required reserve and the level Rs of the statutory reserve.
Obviously the reserve adequacy depends on the particular definition of the required reserve
R∗. Tables 4.5 and 4.6 report results on reserve adequacy assuming four different definitions
of R∗: the sample mean L and the quantiles Q(75)(L), Q(90)(L) and Q(95)(L) of the pre-
dictive distribution of the undiscounted OLL. The following relative adequacy measures are
considered:

· the difference ∆ between the statutory reserve and the sample mean of the overall OLL,
as a percent of the statutory reserve:

∆ :=
Rs − L

Rs
;

· the difference ∆(α) between the statutory reserve and the α-th quantile Q(α)(L) of the
OLL distribution, as a percent of the statutory reserve, for α = 75, 90, 95%:

∆(α) :=
Rs − Q(α)(L)

Rs
.

The critical probability :

p∗ := P(L ≤ Rs) ,

which can be considered as an alternative measure of reserve adequacy, is also reported. In
these tables companies are ordered by decreasing values of ∆.

Elementary summary statistics for the two models are given in tables 4.7 and 4.8.

A graphical representation of data in table 4.5 and 4.6 is provided in figure 4.3 and 4.4,
respectively. On the horizontal axis the code number CodCv of the companies, sorted by
decreasing values of ∆, is reported. The values of ∆ are represented with dots joined by solid
line, ∆(75) with circles joined by dashed line, and ∆(90) with diamonds joined by dotted line.
The values of the three adequacy measures are reported on the left vertical axis. As usual,
the conventional statutory reserves (1500, 500, 100 and 50) are also reported on the right
vertical axis and represented by vertical bars.

Results on reserve adequacy expressed in terms of monetary amounts are reported in
tables 4.9, 4.10, 4.11 and 4.12. The analysis is developed here at aggregate level, on the four
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n CodCv Class ∆ ∆(75) ∆(90) ∆(95) p∗

(%) (%) (%) (%)

1 30 3 52.18 48.48 44.71 42.46 1.00
2 8 1 38.31 35.88 33.50 32.01 1.00
3 34 1 25.38 18.85 10.85 5.65 0.98
4 36 3 24.26 16.78 9.24 4.82 0.98
5 10 1 23.11 19.82 16.69 14.72 1.00
6 11 1 20.06 16.72 12.80 10.32 1.00
7 22 2 17.84 12.81 7.73 4.37 0.98
8 20 3 17.76 12.73 7.71 4.68 0.99
9 24 2 16.47 11.05 5.41 2.25 0.97

10 9 2 14.36 10.85 7.56 5.26 0.99
11 31 3 13.48 7.07 0.04 -4.67 0.90
12 39 4 13.27 2.95 -9.89 -18.17 0.79
13 5 2 10.82 7.89 5.15 3.52 0.99
14 1 1 9.13 6.97 5.02 3.81 1.00
15 18 3 8.01 3.16 -1.49 -4.39 0.86
16 29 3 6.29 -0.74 -7.66 -11.86 0.72
17 27 3 3.66 -3.04 -9.82 -14.08 0.67
18 40 3 1.38 -13.38 -30.58 -41.54 0.54
19 2 1 0.50 -2.54 -5.29 -6.82 0.53
20 15 2 -0.03 -5.28 -9.85 -12.58 0.48
21 13 2 -0.27 -5.19 -10.04 -12.79 0.52
22 6 2 -0.77 -4.21 -7.56 -9.34 0.45
23 19 2 -4.81 -10.70 -17.11 -21.23 0.30
24 4 1 -5.44 -8.66 -12.04 -14.14 0.14
25 35 2 -6.74 -16.41 -25.97 -32.79 0.31
26 14 2 -6.93 -12.37 -17.47 -20.60 0.21
27 16 2 -7.56 -13.04 -18.09 -21.25 0.19
28 33 4 -10.01 -20.10 -30.34 -36.99 0.27
29 3 1 -10.94 -14.47 -17.63 -19.58 0.02
30 32 3 -18.63 -28.92 -38.83 -45.41 0.10
31 12 2 -18.85 -24.40 -29.76 -32.98 0.01
32 7 1 -19.20 -23.26 -27.20 -29.54 0.00
33 21 2 -20.45 -27.53 -35.45 -40.61 0.02
34 37 3 -21.20 -33.63 -46.48 -54.83 0.12
35 28 3 -22.56 -31.43 -41.31 -48.02 0.04
36 38 4 -23.65 -38.61 -55.10 -66.06 0.16
37 23 2 -28.35 -36.83 -44.87 -49.35 0.01
38 25 3 -36.93 -45.50 -55.25 -61.24 0.00
39 17 2 -43.09 -50.17 -57.74 -62.35 0.00
40 26 3 -63.16 -74.40 -86.33 -93.52 0.00

Table 4.5: Reserve adequacy measures under the ODP model
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n CodCv Class ∆ ∆(75) ∆(90) ∆(95) p∗

(%) (%) (%) (%)

1 30 3 52.18 49.16 46.04 44.08 1.00
2 8 1 38.31 36.40 34.56 33.43 1.00
3 34 1 25.38 21.28 17.14 14.55 1.00
4 36 3 24.26 16.44 7.58 1.83 0.96
5 10 1 23.11 20.70 18.39 16.97 1.00
6 11 1 20.06 17.75 15.55 14.20 1.00
7 22 2 17.84 14.50 11.22 9.20 1.00
8 20 3 17.76 14.76 11.84 10.04 1.00
9 24 2 16.47 12.02 7.53 4.73 0.99

10 9 2 14.36 11.56 8.86 7.21 1.00
11 31 3 13.48 9.27 5.07 2.46 0.98
12 39 4 13.27 7.72 1.98 -1.62 0.93
13 5 2 10.82 8.81 6.91 5.75 1.00
14 1 1 9.13 7.56 6.09 5.20 1.00
15 18 3 8.01 4.76 1.60 -0.34 0.94
16 29 3 6.29 2.20 -1.84 -4.34 0.84
17 27 3 3.66 -2.05 -7.90 -11.55 0.67
18 40 3 1.38 -5.35 -12.37 -16.79 0.57
19 2 1 0.50 -2.14 -4.65 -6.18 0.56
20 15 2 -0.03 -3.84 -7.55 -9.84 0.51
21 13 2 -0.27 -4.03 -7.68 -9.93 0.49
22 6 2 -0.77 -3.08 -5.27 -6.60 0.42
23 19 2 -4.81 -8.66 -12.40 -14.70 0.21
24 4 1 -5.44 -8.02 -10.46 -11.95 0.08
25 35 2 -6.74 -16.11 -26.33 -32.88 0.34
26 14 2 -6.93 -10.32 -13.59 -15.58 0.09
27 16 2 -7.56 -11.81 -15.97 -18.53 0.12
28 33 4 -10.01 -15.55 -21.10 -24.54 0.12
29 3 1 -10.94 -14.07 -17.06 -18.88 0.01
30 32 3 -18.63 -24.52 -30.41 -34.07 0.01
31 12 2 -18.85 -23.25 -27.54 -30.17 0.00
32 7 1 -19.20 -22.36 -25.36 -27.19 0.00
33 21 2 -20.45 -25.09 -29.61 -32.40 0.00
34 37 3 -21.20 -35.80 -53.09 -64.48 0.19
35 28 3 -22.56 -30.17 -38.00 -42.90 0.02
36 38 4 -23.65 -33.34 -43.69 -50.26 0.05
37 23 2 -28.35 -34.44 -40.50 -44.26 0.00
38 25 3 -36.93 -42.66 -48.29 -51.77 0.00
39 17 2 -43.09 -50.97 -58.95 -63.93 0.00
40 26 3 -63.16 -73.20 -83.52 -89.98 0.00

Table 4.6: Reserve adequacy measures under the DFCL model
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Figure 4.3: Reserve adequacy under the ODP model

Figure 4.4: Reserve adequacy under the DFCL model
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minimum maximum average std

∆ -63.16 52.18 -1.33 22.37
∆(75) -74.39 48.48 -7.82 24.14
∆(90) -86.33 44.71 -14.57 26.37
∆(95) -94.52 42.46 -18.82 27.99
Cv(L) 3.51 24.17 9.99 4.64

Table 4.7: ODP model – Summary statistics on reserve adequacy measures

minimum maximum average std

∆ -63.16 52.18 -1.33 22.37
∆(75) -75.20 49.16 -6.15 23.97
∆(90) -83.52 46.04 -11.07 25.91
∆(95) -89.98 44.08 -14.15 27.26
Cv(L) 2.59 19.94 7.27 3.63

Table 4.8: DFCL model – Summary statistics on reserve adequacy measures

dimensional classes and on the overall sample. Table 4.9 illustrates the required reserve levels
(in million Euros) defined by posing R∗ = L and R∗ = Q(α)(L), with α = 75, 90, 95%. The
number NL and Nα of companies having a corresponding non-negative excess reserve, that
is such that Rs − R∗ ≥ 0 (for R∗ = L and R∗ = Q(α)), is also indicated. Table 4.10 contains
the analogous results referred to the Mack’s model.

The same informations, expressed in terms of excess of reserve Rs−R∗ (in million Euros)
are reported in tables 4.11 and 4.12. The values of ∆ := Rs − L and ∆(α) := Rs − Q(α)(L),
for α = 75, 90, 95%, are given for the two models.

4.1.5 Risk margins as the cost of capital

Alternative measures of reserve adequacy can be introduced using risk margins defined as the
cost of the reserve risk capital. This point of view will be assumed in this paragraph, only
considering for the moment, the undiscounted case under the ODP model.

Reserve risk capital and the cost of risk capital

In our application K0 denotes the reserve risk capital for the year 2005, that is the solvency
capital required at the end of 2004 and to be maintained until the end of 2005. In section 1.2.6
several alternative approaches to risk capital computation have been considered. In section
1.3 these different methods have been adapted to obtain consistency if the corresponding cost
of capital κ0 is used for determining the reserve risk margin λ0. At this stage we use the
YEE undiscounted method, providing the expression (1.71):

K0 =
W0(Z1) − L

1 + s
,
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Class Rs L N
L

Q(75) N75 Q(90) N90 Q(95) N95

1 15,114.43 14,116.69 6 14,662.96 5 15,232.53 5 15,586.90 5
2 7,257.39 7,604.49 4 8,002.60 4 8,397.04 4 8,641.54 4
3 1,541.70 1,556.26 8 1,679.02 5 1,807.45 4 1,888.57 3
4 128.45 135.65 1 150.46 1 167.04 0 177.87 0

total 24,041.97 23,413.09 19 24,495.04 15 25,604.06 13 26,294.87 12

Table 4.9: ODP model – Required reserves by classes

Class Rs L N
L

Q(75) N75 Q(90) N90 Q(95) N95

1 15,114.43 14,116.69 6 14,531.09 5 14,930.39 5 15,175.18 5
2 7,257.39 7,604.49 4 7,910.61 4 8,214.97 4 8,403.65 4
3 1,541.70 1,556.26 8 1,641.22 6 1,729.03 5 1,784.24 4
4 128.45 135.65 1 144.26 1 153.20 1 158.82 0

total 24,041.97 23,413.09 19 24,227.17 16 25,027.59 15 25,521.89 13

Table 4.10: DFCL model – Required reserves by classes

Class ∆ (%Rs) ∆(75) (%Rs) ∆(90) (%Rs) ∆(95) (%Rs)

1 997.74 6.60 451.47 2.99 -118.10 -0.78 -472.47 -3.13
2 -347.10 -4.78 -745.21 -10.27 -1,139.65 -15.70 -1,384.15 -19.07
3 -14.56 -0.94 -137.32 -8.91 -265.75 -17.24 -346.87 -22.50
4 -7.20 -5.60 -22.01 -17.14 -38.59 -30.04 -49.42 -38.47

total 628.88 2.62 -453.07 -1.88 -1,562.09 -6.50 -2,252.90 -9.37

Table 4.11: ODP model – Excesses of reserve by classes

Class ∆ (%Rs) ∆(75) (%Rs) ∆(790) (%Rs) ∆(95) (%Rs)

1 997.74 6.60 583.34 3.86 184.035 1.22 -60.75 -0.40
2 -347.10 -4.78 -653.22 -9.00 -957.578 -13.19 -1,146.26 -15.79
3 -14.56 -0.94 -99.52 -6.46 -187.332 -12.15 -242.53 -15.73
4 -7.20 -5.60 -15.81 -12.31 -24.746 -19.27 -30.37 -23.64

total 628.88 2.62 -185.20 -0.77 -985.621 -4.10 -1,479.92 -6.16

Table 4.12: DFCL model – Excesses of reserve by classes
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where W0(Z1) is the RAV of the year-end obligations:

Z1 = Y1 +
n−1∑

τ=2

E1(Yτ ) ,

and s is the positive spread expressing the excess return required by the shareholders over the
risk-free rate for investing in the insurance business (see also table 1.3). The corresponding
risk margin provided by expression (1.72) is:

λ0 =
s

1 + s

W0(Z1) − L

L

T∑

τ=1

T∑

θ=τ

Y θ ,

which is equal to the cost of capital κ0 by construction.
We derived the predictive distribution of Z1 for each company in the selected sample

under the ODP model, using a bootstrap procedure analogous to that introduced in [13].
The RAV W0(Z1) has been specified as the quantile at the confidence level α = 99.5% and
has been computed on this distribution. The spread has been posed at the level s = 6% (as
in the Swiss Solvency Test) and the corresponding value of K0 has been calculated.

We also computed the risk capital K ′
0 specifying the worst case W0(Z1) as the expected

shortfall at the 99% confidence level, with the same value of s.
The values of K0 expressed as a percent of the sample mean L are illustrated in figure

4.5 using dots joined by solid line. The corresponding values of K ′
0 are represented by

circles joined by dashed line. The companies, reported on the horizontal axis, are sorted
by increasing value of CodCv; the usual representation of the conventional statutory reserve
is also provided. The numerical values of K0 and K ′

0 (as a percent of L) are reported in
table 4.13. In the same table we also provide the corresponding values κ0 and κ′

0 of the cost
of capital, expressed as a percent of L; κ0 is expressed also as a percent of the K0 reserve
risk capital (the ratio between κ′

0 and K ′
0 has the same value). These costs are graphically

illustrated in figure 4.6, with the same symbols of figure 4.5.

Comparison with the percentile approach

The comparison between risk margins derived as quantiles and risk margins computed as
costs of capital is provided in figure 4.7. As in figure 4.1 the risk margins are expressed as
a percentage of the sample mean L and the companies are sorted by increasing Cv. Risk
margins as the 75-th and 90-th quantile of L are reported, represented by diamonds joined
by solid line and by dashed line, respectively. Dots joined by solid line and by dashed line
represent risk margins determined by the cost of capital κ0 and κ′

0, respectively.
In table 4.14 the comparison is provided between risk margins by 75% quantile and risk

margins as cost of capital (as 99.5% quantile). As in tables 4.9 and 4.11 the analysis is made
in terms of reserve adequacy for the four dimensional classes.
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CodCv Class K0 K ′

0 κ0 κ0 κ′

0

(%L) (%L) (%K0) (%L) (%L)

1 1 9.69 10.08 17.22 1.67 1.74
2 1 12.69 13.25 15.95 2.02 2.11
3 1 12.66 13.14 17.20 2.18 2.26
4 1 13.52 14.04 17.77 2.40 2.50
5 2 14.16 14.35 14.43 2.04 2.07
6 2 14.94 15.62 18.64 2.79 2.91
7 1 15.34 16.19 17.77 2.73 2.88
8 1 18.28 18.86 14.61 2.67 2.76
9 2 17.62 18.37 17.71 3.12 3.25

10 1 17.89 18.80 17.45 3.12 3.28
11 1 21.85 22.64 17.53 3.83 3.97
12 2 18.89 20.03 15.03 2.84 3.01
13 2 21.91 22.64 17.85 3.91 4.04
14 2 22.02 23.05 18.30 4.03 4.22
15 2 21.04 22.17 15.25 3.21 3.38
16 2 20.70 21.84 17.21 3.56 3.76
17 2 23.62 24.92 19.76 4.67 4.92
18 3 24.13 25.41 17.12 4.13 4.35
19 2 29.98 31.62 19.31 5.79 6.11
20 3 28.68 29.21 18.39 5.28 5.37
21 2 30.09 31.60 19.07 5.74 6.03
22 2 28.09 28.94 16.87 4.74 4.88
23 2 28.86 29.21 15.49 4.47 4.52
24 2 29.99 31.12 16.36 4.91 5.09
25 3 35.32 36.69 18.97 6.70 6.96
26 3 32.22 34.61 15.86 5.11 5.49
27 3 33.99 35.60 16.03 5.45 5.71
28 3 36.27 39.28 20.79 7.54 8.17
29 3 38.93 40.55 16.76 6.52 6.80
30 3 36.35 38.76 15.70 5.71 6.09
31 3 44.17 46.71 18.31 8.09 8.55
32 3 43.80 46.43 17.65 7.73 8.19
33 4 48.75 50.59 18.68 9.11 9.45
34 1 52.69 54.93 19.21 10.12 10.55
35 2 47.41 50.69 16.72 7.93 8.48
36 3 51.61 54.60 16.63 8.58 9.08
37 3 50.31 53.54 17.30 8.70 9.26
38 4 62.95 66.28 16.71 10.52 11.08
39 4 79.62 85.10 17.59 14.01 14.97
40 3 87.62 91.38 17.90 15.68 16.35

Table 4.13: Risk capitals and costs of capital under the ODP model
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Figure 4.5: ODP model – Risk capitals as 99.5% quantiles and as 99% expected shortfall

Class Rs L Q(75) ∆(75) (%Rs) L + κ0 ∆(CoC) (%Rs)

1 15,114.43 14,116.69 14,662.96 451.47 2.99 14,579.29 535.14 3.54
2 7,257.39 7,604.49 8,002.60 -745.21 -10.27 7,920.16 -662.77 -9.13
3 1,541.70 1,556.26 1,679.02 -137.32 -8.91 1,668.34 -126.64 -8.21
4 128.45 135.65 150.46 -22.01 -17.14 150.56 -22.11 -17.21

total 24,041.97 23,413.09 24,495.04 -453.07 -1.88 24,318.35 -276.38 -1.15

Table 4.14: ODP model – Required reserves and excesses of reserve by classes
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Figure 4.6: Risk margins as costs of capital - Spread to shareholders: 6%
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Figure 4.7: Risk margins as quantiles and as costs of capital
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4.2 Discounted values

In order to provide a conservative assessment of the required reserve, the overall OLL are
usually derived as the sum of the undiscounted future paid losses. However if an appropriate
risk margin is used discounting could be viable, since the risk-loaded expected payoffs could
be considered as the certainty equivalent of random liabilities.

To gain some insight into this issue we considered the predictive distribution of the r.v.:

D :=
n∑

i=1

n−1∑

τ=1

vτ Ci,di+τ ,

obtained by aggregating the discounted paid losses of the future triangle produced by the
simulated ODP model. The term structure of risk-free interest rates prevailing on the market
at the valuation date on December 31, 2004 was used for discounting. The discount factors
vτ and the corresponding annual interest rates iτ for the relevant maturities τ = 1, 2, . . . , 9
are illustrated in table 4.15.

τ vτ iτ

1 0.9777 2.28
2 0.9507 2.56
3 0.9204 2.80
4 0.8879 3.02
5 0.8542 3.20
6 0.8200 3.36
7 0.7857 3.50
8 0.7519 3.63
9 0.7187 3.74

Table 4.15: The term structure of risk-free interest rates on December 31, 2004

Discounted mean and quantiles

On the empirical distribution of the discounted paid losses the α-quantiles Q(α)(D) have
been computed for α = 75, 90, 95%. These quantiles are reported in table 4.16, expressed as
a percent of L. The corresponding value of the discounted sample mean:

M0 :=
n∑

i=1

n−1∑

τ=1

vτ E0 (Ci,di+τ ) =
n−1∑

τ=1

vτ Y τ ,

is also given in the table. Also in this case companies are sorted by CodCv. In table 4.17 we
also provided the percentage differences between discounted and undiscounted values:

∆Lv :=
M0 − L

L
.

and:

∆Q(α)
v :=

Q(α)(D) − Q(α)L)

Q(α)(L)
.
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CodCv Class M0 Q(75)(D) Q(90)(D) Q(95)(D)
(%L) (%L) (%L) (%L)

1 1 92.07 94.18 96.09 97.25
2 1 92.71 95.44 97.86 99.30
3 1 92.06 94.88 97.38 99.00
4 1 91.77 94.48 97.27 99.02
5 2 93.52 96.47 99.24 100.92
6 2 91.27 94.26 97.10 98.66
7 1 91.79 94.83 97.76 99.50
8 1 93.42 97.02 100.47 102.65
9 2 91.79 95.39 98.79 101.14

10 1 91.93 95.78 99.33 101.61
11 1 91.87 95.59 99.85 102.53
12 2 93.22 97.44 101.52 103.94
13 2 91.72 95.99 100.14 102.52
14 2 91.49 95.91 100.19 102.68
15 2 93.10 97.78 101.97 104.40
16 2 92.08 96.59 100.78 103.38
17 2 90.69 94.96 99.54 102.26
18 3 92.11 96.76 101.27 104.04
19 2 90.94 95.79 101.08 104.44
20 3 91.44 96.79 102.09 105.25
21 2 91.09 96.29 101.94 105.62
22 2 92.23 97.78 103.19 106.76
23 2 93.01 98.92 104.58 107.59
24 2 92.49 98.23 104.26 107.51
25 3 91.11 96.60 102.62 106.33
26 3 92.77 98.99 105.48 109.20
27 3 92.69 98.90 105.13 109.09
28 3 90.15 96.45 103.39 108.10
29 3 92.31 99.06 105.64 109.64
30 3 92.87 99.92 107.05 111.33
31 3 91.47 98.04 105.14 110.05
32 3 91.82 99.27 106.37 111.10
33 4 91.27 99.48 107.62 113.10
34 1 90.97 98.63 107.86 114.03
35 2 92.29 100.46 108.38 114.02
36 3 92.35 101.28 110.05 115.34
37 3 91.99 101.03 110.47 116.54
38 4 92.36 103.15 114.98 122.67
39 4 91.77 102.10 114.56 122.47
40 3 91.74 105.17 120.64 130.60

Table 4.16: Quantiles of discounted OLL in the ODP model
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CodCv Class ∆Lv ∆Q
(75)
v ∆Q

(90)
v ∆Q

(95)
v

(%L) (%) (%) (%)

1 1 -7.93 -8.01 -8.07 -8.12
2 1 -7.29 -7.39 -7.52 -7.50
3 1 -7.94 -8.04 -8.16 -8.15
4 1 -8.23 -8.32 -8.47 -8.53
5 2 -6.48 -6.59 -6.69 -6.72
6 2 -8.73 -8.86 -9.03 -9.08
7 1 -8.21 -8.29 -8.38 -8.44
8 1 -6.58 -6.67 -6.80 -6.87
9 2 -8.21 -8.38 -8.47 -8.58

10 1 -8.07 -8.16 -8.33 -8.39
11 1 -8.13 -8.24 -8.46 -8.60
12 2 -6.78 -6.91 -7.01 -7.11
13 2 -8.28 -8.49 -8.74 -8.85
14 2 -8.51 -8.73 -8.80 -8.96
15 2 -6.90 -7.10 -7.15 -7.24
16 2 -7.92 -8.09 -8.21 -8.29
17 2 -9.31 -9.51 -9.70 -9.86
18 3 -7.89 -8.09 -8.22 -8.32
19 2 -9.06 -9.30 -9.54 -9.71
20 3 -8.56 -8.80 -9.03 -9.19
21 2 -8.91 -9.06 -9.35 -9.52
22 2 -7.77 -7.86 -8.12 -8.28
23 2 -6.99 -7.21 -7.34 -7.54
24 2 -7.51 -7.76 -7.93 -8.14
25 3 -8.89 -9.10 -9.50 -9.71
26 3 -7.23 -7.38 -7.64 -7.93
27 3 -7.31 -7.53 -7.77 -7.88
28 3 -9.85 -10.1 -10.3 -10.5
29 3 -7.69 -7.85 -8.05 -8.15
30 3 -7.13 -7.26 -7.41 -7.49
31 3 -8.53 -8.72 -9.00 -9.04
32 3 -8.18 -8.65 -9.10 -9.35
33 4 -8.73 -8.87 -9.16 -9.18
34 1 -9.03 -9.30 -9.72 -9.81
35 2 -7.71 -7.88 -8.16 -8.34
36 3 -7.65 -7.82 -8.16 -8.23
37 3 -8.01 -8.37 -8.59 -8.77
38 4 -7.64 -7.98 -8.34 -8.65
39 4 -8.23 -8.76 -9.59 -10.1
40 3 -8.26 -8.52 -8.89 -9.01

Table 4.17: ODP model – Percentage differences between discounted and undiscounted values
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Figure 4.8: Differences between discounted quantiles and undiscounted means under the ODP
model

The “discounted quantiles” Q(α)(D) can be considered as an alternative definition of the
required reserve, and the difference with respect to the undiscounted sample mean L provides
an indication of the corresponding reserve reduction. In figure 4.8 the percentage differences:

Q(α)(D) − L

L

are illustrated for α = 75% (solid line), α = 90% (dashed line) and α = 95% (dotted line).
Tables 4.18 and 4.19 illustrate results on reserve adequacy at aggregate level in the dis-

counted case (for the ODP model). They are the analogous of tables 4.9 and 4.11, respectively,
which were referred to the undiscounted case.

Approximated discounting

We also computed the approximated values Q(α)(D) ≈ ϕQ(α)(L) , obtained by rescaling the
undiscounted sample statistics of the total OLL L by the correction factor:

ϕ :=

∑n
τ=1 vτ Y τ∑n

τ=1 Y τ

=
M0

L
. (4.1)

As illustrated in section 1.2.6, ϕ is the weighted average of the discount factors vτ weighted
by the relative expected OLL. It captures the effect of the discounting on the sample means
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Y τ and can be directly computed without an apposite run of the stochastic model. The
percentage errors between approximated and non-approximated values are reported in table
4.20, together with the corresponding correction factors. The ϕ factor appears to provide
slight overestimates of the correct values Q(α)(D̂), with errors obviously increasing with α.
However the approximation seems quite good, producing errors typically lower than 1% for
the three values of α considered.

Risk margins as the costs of capital

Risk margins defined as the costs of capital have been computed also on discounted basis.
Under the discounted YEE approach the risk capital is given by expression (1.63):

K0 =
v1 W0(M

−
1 ) − M0

1 + v1 s
=

U0(v1 M−
1 )

1 + v1 s
,

where the year-end obligations are:

M−
1 = Y1 +

n−1∑

τ=2

vτ E1(Yτ ) .

The corresponding risk margin, which equals the cost of capital, is given by the expression
(1.64):

λ0 = κ0 = s
K0

M0

T∑

τ=1

vτ M̂τ−1 =
s

1 + v1 s

v1 W0(M
−
1 ) − M0

M0

T∑

τ=1

vτ

vτ−1

T∑

θ=τ

vθ Y θ .

Also the predictive distribution of M−
1 has been derived under the ODP model applying

the bootstrap procedure to each company in the selected sample. The RAV W0(M
−
1 ) has

been specified as the quantile at the security level α = 99.5% and as the expected shortfall
at the security level α = 99%; the corresponding risk capitals K0 and K ′

0 and risk margins
κ0 and κ′

0 have been derived assuming a spread at the level s = 6%.
The numerical values of the risk capitals and of the risk margins are reported in table

4.21 expressed as a percent of the discounted sample mean M0.
The comparison between risk margins derived as discounted quantiles and risk margins

computed as costs of capital with the discounted YEE approach is provided in figure 4.9. To
facilitate comparison with figure 4.7 all the risk margins have been expressed as a percentage
of the undiscounted sample mean L and the same scale of figure 4.7 has been used. As
usual the companies are sorted by increasing Cv, i.e. by the CodCv code. Risk margins as
the 75-th and 90-th quantile of D are represented by diamonds joined by solid line and by
dashed line, respectively. Dots joined by solid line and by dashed line represent risk margins
determined by the cost of capital κ0 and κ′

0, respectively.
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Class Rs M0 NM0
Q(75)(D) N75 Q(90)(D) N90 Q(95)(D) N95

1 15,114.43 12,985.39 7 13,470.89 7 13,967.67 6 14,283.61 6
2 7,257.39 7,001.02 11 7,353.73 7 7,701.26 5 7,914.76 5
3 1,541.70 1,429.11 8 1,537.57 7 1,649.87 6 1,720.88 5
4 128.45 124.49 1 137.61 1 151.98 1 161.35 0

total 24,041.97 21,540.01 27 22,499.79 22 23,470.78 18 24,080.60 16

Table 4.18: ODP model– Required reserve by classes on discounted basis

Class ∆(D) (%Rs) ∆(75)(D) (%Rs) ∆(90)(D) (%Rs) ∆(95)(D) (%Rs)

1 2,129.04 14.09 1,643.5 10.87 1,146.76 7.59 830.82 5.50
2 256.37 3.53 -96.34 -1.33 -443.87 -6.12 -657.37 -9.06
3 112.60 7.30 4.13 0.27 -108.17 -7.02 -179.18 -11.62
4 3.96 3.08 -9.16 -7.13 -23.53 -18.32 -32.90 -25.61

total 2,501.96 10.41 1,542.18 6.41 571.19 2.38 -38.63 -0.16

Table 4.19: ODP model – Excesses of reserve by classes on discounted basis

Figure 4.9: ODP model with con discounting: risk margin from quantiles and as costs of
capital
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CodCv Class err(Q(75)) err(Q(90)) err(Q(95)) ϕ
(%) (%) (%)

1 1 0.08 0.15 0.20 0.9207
2 1 0.11 0.24 0.23 0.9271
3 1 0.11 0.24 0.23 0.9206
4 1 0.09 0.25 0.32 0.9177
5 2 0.12 0.22 0.25 0.9352
6 2 0.13 0.33 0.38 0.9127
7 1 0.08 0.18 0.25 0.9179
8 1 0.10 0.23 0.31 0.9342
9 2 0.18 0.29 0.40 0.9179

10 1 0.09 0.28 0.35 0.9193
11 1 0.12 0.36 0.51 0.9187
12 2 0.15 0.25 0.36 0.9322
13 2 0.22 0.50 0.62 0.9172
14 2 0.25 0.31 0.49 0.9149
15 2 0.22 0.27 0.37 0.9310
16 2 0.19 0.32 0.41 0.9208
17 2 0.23 0.44 0.62 0.9069
18 3 0.22 0.35 0.46 0.9211
19 2 0.27 0.53 0.72 0.9094
20 3 0.26 0.52 0.70 0.9144
21 2 0.16 0.48 0.68 0.9109
22 2 0.10 0.38 0.56 0.9223
23 2 0.23 0.37 0.59 0.9301
24 2 0.28 0.47 0.69 0.9249
25 3 0.23 0.67 0.90 0.9111
26 3 0.17 0.44 0.76 0.9277
27 3 0.24 0.51 0.62 0.9269
28 3 0.24 0.54 0.72 0.9015
29 3 0.18 0.39 0.50 0.9231
30 3 0.14 0.30 0.39 0.9287
31 3 0.21 0.52 0.55 0.9147
32 3 0.52 1.02 1.30 0.9182
33 4 0.16 0.48 0.49 0.9127
34 1 0.31 0.77 0.87 0.9097
35 2 0.18 0.49 0.69 0.9229
36 3 0.19 0.56 0.64 0.9235
37 3 0.39 0.64 0.84 0.9199
38 4 0.37 0.77 1.11 0.9236
39 4 0.58 1.50 2.10 0.9177
40 3 0.28 0.69 0.82 0.9174

Table 4.20: Percentage errors between approximated and exact discounting
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CodCv Class K0 K ′

0 κ0 κ0 κ′

0

(%M0) (%M0) (%K0) (%M0) (%M0)

1 1 9.23 9.58 15.80 1.46 1.51
2 1 11.78 12.22 14.59 1.72 1.78
3 1 11.85 12.34 15.74 1.87 1.94
4 1 12.81 13.32 16.27 2.08 2.17
5 2 13.43 13.67 13.30 1.79 1.82
6 2 14.13 14.66 16.89 2.39 2.48
7 1 14.59 15.40 16.33 2.38 2.52
8 1 17.29 17.71 13.44 2.33 2.38
9 2 16.61 17.07 16.21 2.69 2.77

10 1 17.15 17.79 15.97 2.74 2.84
11 1 20.88 21.33 15.95 3.33 3.40
12 2 18.05 18.74 13.91 2.51 2.61
13 2 19.77 20.94 16.32 3.23 3.42
14 2 20.73 21.99 16.75 3.47 3.68
15 2 19.90 20.68 14.06 2.80 2.91
16 2 19.56 20.81 15.86 3.10 3.30
17 2 22.17 23.33 18.01 3.99 4.20
18 3 22.50 23.56 15.67 3.53 3.69
19 2 28.27 29.38 17.62 4.98 5.18
20 3 26.93 27.86 16.83 4.53 4.69
21 2 28.13 29.60 17.48 4.92 5.17
22 2 26.41 27.27 15.43 4.08 4.21
23 2 27.62 28.60 14.37 3.97 4.11
24 2 27.96 28.85 14.97 4.19 4.32
25 3 32.77 34.14 17.27 5.66 5.90
26 3 29.97 31.65 14.56 4.36 4.61
27 3 31.49 33.59 14.78 4.65 4.96
28 3 34.20 36.49 18.93 6.47 6.91
29 3 37.12 38.41 15.40 5.71 5.91
30 3 34.59 36.62 14.47 5.01 5.30
31 3 41.51 44.07 16.68 6.93 7.35
32 3 40.28 41.74 16.13 6.50 6.73
33 4 47.33 48.59 17.03 8.06 8.28
34 1 50.15 51.46 17.43 8.74 8.97
35 2 44.63 47.27 15.23 6.80 7.20
36 3 47.75 50.41 15.22 7.26 7.67
37 3 46.83 48.94 15.82 7.41 7.74
38 4 60.52 62.96 15.45 9.35 9.73
39 4 72.43 76.58 15.75 11.41 12.06
40 3 85.01 87.97 16.46 14.00 14.48

Table 4.21: ODP model with con discounting: risk capitals and costs of capital
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4.3 Analysis of MTPL data by classes of companies

The analysis of market data has been also performed on an aggregate basis, considering the
total paid losses for each dimensional class, instead of the individual companies. In this part
of the study we considered all the companies present on the MTPL market at the end of 2004,
totalling 75 companies; the distribution of the companies in the four classes just defined is
illustrated in table 4.22.

Class Statutory reserve n. co. Total reserve

1 1, 000 ≤ Rs 9 15,114.43
2 250 ≤ Rs < 1, 000 16 7,545.01
3 50 ≤ Rs < 250 24 2,702.24
4 0 ≤ Rs < 50 26 355.55

MTPL 75 25,717.22

Table 4.22: Classification of MTPL market by statutory reserve

For each class a single triangle of paid losses has been constructed summing the payments
in the same (i, j) cell. The overall triangle – the “MTPL market triangle” – has been also
derived by the same procedure. We applied the ODP model and the Mack’s model to these
aggregated triangles. The corresponding summary statistics of the predictive distribution of
L̂ provided by the two models are reported in tables 4.23 and 4.24, that are analogous to
table 4.1 and 4.2, respectively.

Class Rs L Pstd(L) Cv(L) Q(50)(L) Q(75)(L) Q(90)(L) Q(95)(L)

1 15114.43 14378.68 489.849 3.41 14362.74 14692.44 15010.45 15208.82
2 7545.01 7662.27 255.683 3.34 7650.55 7827.61 7976.32 8064.85
3 2702.24 3040.72 155.932 5.13 3037.21 3140.67 3245.44 3315.90
4 355.55 510.39 109.821 21.52 512.94 583.19 657.51 701.98

MTPL 25717.22 25229.65 726.553 2.88 25217.71 25688.43 26142.00 26456.77

Table 4.23: ODP model – Summary statistics of L for different classes

Class Rs L Pstd(L) Cv(L) Q(50)(L) Q(75)(L) Q(90)(L) Q(95)(L)

1 15114.43 14378.68 396.939 2.76 14373.20 14643.29 14890.71 15040.77
2 7545.01 7662.27 181.940 2.37 7660.12 7783.77 7896.76 7965.17
3 2702.24 3040.72 114.210 3.76 3038.58 3116.51 3188.36 3232.15
4 355.55 510.39 89.752 17.58 502.68 565.47 628.66 669.81

MTPL 25717.22 25229.65 623.441 2.47 25221.95 25645.79 26033.34 26268.07

Table 4.24: DFCL model – Summary statistics of L for different classes (lognormal assump-
tion)

It should be pointed out that the variability measures in tables 4.23 and 4.24 are largely
influenced by the diversification effect produced by the aggregation of the loss triangles. For

83



example, the average of Cv(L) over the 40 companies in the selected sample resulted 9.99%
for the ODP model (see table 4.7) and 7.27% for the Mack’s model (table 4.8), which are much
greater than the values 2.88% and 2.47% derived by the corresponding aggregate triangles.
If the average is computed weighting by L this effect is only weakly reduced (one obtains
Cv(L) = 7.17% for the ODP and Cv(L) = 5.31% for the DFCL).

In order to obtain a “representative loss distribution” of the overall MTPL market, we
considered a lognormal distribution with mean equal to the total expected OLL provided
by the chain-ladder and coefficient of variation equal to the average Cv(L) in the selected
sample (hence 9.99% and 7.27%). These density functions for the two models are illustrated
in figures 4.10 and 4.11. OLL values are reported in billions Euro. Also the sample mean L
and the quantiles Q(α)(L), for α = 50, 75, 90, 95, 99, 99.5% are indicated.
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Figure 4.10: ODP model – Distribution of the MTPL overall OLL of all companies

Figure 4.11: DFCL model – Distribution of the MTPL overall OLL of all companies
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4.4 Analysis of Motor Kasko data

Data on the Motor Kasko (MK) have also been analyzed. For this line of business only aggre-
gated loss triangles were available obtained summing the MK claim payments of companies
in the same classes defined for MTPL in table 4.22. On December 31, 2004 seven years of
data were available. The summary statistics of L̂ obtained by the ODP model and by the
Mack’s model applied to these triangles and on the overall triangle are reported in tables 4.25
and 4.26.

Class Rs L Pstd(L) Cv(L) Q(50)(L) Q(75)(L) Q(90)(L) Q(95)(L)

1 350.12 325.74 21.40 6.57 325.24 339.79 353.61 362.56
2 189.28 157.98 7.88 4.99 157.84 163.27 168.10 171.03
3 86.93 79.00 6.60 8.35 79.11 83.69 87.80 90.27
4 64.33 38.68 7.85 20.29 38.45 43.89 49.17 52.31

MK 690.66 602.20 25.97 4.31 601.63 619.53 636.46 645.52

Table 4.25: MK data – Summary statistics of L̂ for different classes under ODP model

Class Rs L Pstd(L̂) Cv(L̂) Q(50)(L̂) Q(75)(L̂) Q(90)(L̂) Q(95)(L̂)

1 350.12 325.74 15.170 4.66 325.39 335.76 345.39 351.28
2 189.28 157.98 9.786 6.19 157.68 164.40 170.69 174.58
3 86.93 79.00 7.263 9.19 78.67 83.69 88.49 91.49
4 64.33 38.68 9.720 25.13 37.52 44.33 51.51 56.36

MK 690.66 602.20 22.565 3.75 601.77 617.17 631.37 640.02

Table 4.26: MK data – Summary statistics of L̂ for different classes under DFCL model
(lognormal assumption)
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4.5 Comparing results from multiple approaches

In chapter 1 we considered a number of alternative methods and approximations for com-
puting risk margins and risk capitals. The formal representation of these approaches has
been summarized in tabular form in section 1.3.3. The outcomes of the empirical analysis
presented in some details in the previous part of this chapter however, were referred to only
few of these methods. In this section we provide in synthetic form the results obtained by
applying to our MTPL data all of the methods and approximations introduced in chapter 1;
the exposition strictly follows [16]1. We computed all the items considered in tables 1.1, 1.2
and 1.3 applying the ODP and the DFCL model to the triangle of historical paid losses of
each of the 40 companies in the selected sample. The results of the valuation procedures are
summarized in tables 4.27, 4.28 and 4.29, which are arranged exactly as the definitory ta-
bles 1.1, 1.2 and 1.3, respectively. All figures are expressed as a percent of the corresponding
undiscounted best estimate (BE) L (the chain-ladder estimate of the OLL). For each item the
sample mean, the standard deviation, the minimum and the maximum value in the sample
are reported2.

As a first general result it turns out that the DFCL model produces in the sample vari-
ability estimates uniformly lower than that provided by the ODP model; this is consistent
with the average value of the coefficient of variation of L obtained with the two models, which
is 6.81% for the Mack model and 9.03% for the ODP model.

Risk margins and required reserves. In table 4.27 numerical results corresponding to
table 1.1 are provided. The required reserve (RR) is computed as the 75-th and the 90-th
quantile of the relevant random variable (RRV) and the corresponding risk margin (RM) is
derived. One can observe that the 75-th quantile risk margins for the ODP are about 35÷40%
higher than the corresponding risk margins for the DFCL. In both models risk margin figures
display large variability across the sample. For both models the reference level 100 of the
undiscounted best estimate is greater than the minimum value and lower than the maximum
value of the required reserve computed as the discounted 75-th quantile.

Reserve risk capitals given risk margins. In table 4.28 we summarize results of risk
capital (RC) computations after risk margins have been derived under an α-quantile as-
sumption, with α = 75% and 90%. The RAV has been defined as the quantile of the RRV
(see table 1.2) at 99.5% security level. The first year risk loading has been computed as

γ
(α)
1 = β1 Q

(α)
0 (D) − Y 1 , where the allocation fraction has been fixed following (1.50) as

β1 = Y 1/M0. As for the risk margins, also the risk capital values display high variability
across the sample.

1Risk capital values from quantiles considered in [16] (and in previous versions of this paper) were computed
at the 99.9% confidence level (as in the “Basel 2” framework). Here we refer instead to a 99.5% confidence
level, as recently prescribed from CEIOPS [9]. In addition we also report here the valuations obtained with the
discounted approach under the DFCL model; these figures have been derived using the closed form expressions
for the correlations between the Yτ “diagonals” provided in [34].

2To allow a better comparison the results of the ODP model have been adjusted for the simulation error
as illustrated in chapter 4: from all figures the difference (L̃ − L) has been subtracted, where L̃ is the sample
mean of the total OLL provided by the simulation.
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ODP model Mack model

mean stdd min max mean stdd min max

disc BE 92.0 0.8 90.2 93.5 92.0 0.8 90.2 93.5

RR75 97.7 2.5 94.2 105.2 96.3 2.1 93.4 102.6

RM75 5.7 2.5 2.1 13.4 4.3 2.0 1.6 10.6

RR90 103.5 5.4 96.1 120.6 100.6 4.4 95.2 115.0

RM90 11.5 5.4 4.0 28.9 8.7 4.3 3.1 23.1

ϕ-disc BE 92.0 0.8 90.2 93.5 92.0 0.8 90.2 93.5

RR75 97.9 2.6 94.3 105.5 96.3 2.2 93.4 103.1

RM75 5.9 2.6 2.2 13.7 4.3 2.0 1.6 11.1

RR90 104.0 5.6 96.2 121.5 100.7 4.5 95.1 116.2

RM90 12.0 5.6 4.2 29.7 8.7 4.4 3.1 24.2

undisc BE 100.0 0.0 100.0 100.0 100.0 0.0 100.0 100.0

RR75 106.4 2.8 102.4 115.0 104.7 2.2 101.7 112.0

RM75 6.4 2.8 2.4 15.0 4.7 2.2 1.7 12.0

RR90 113.0 6.1 104.5 132.4 109.5 4.8 103.3 126.3

RM90 13.0 6.1 4.5 32.4 9.5 4.8 3.3 26.3

Table 4.27: Risk margins where the required reserve is defined as 75-th and 90-th quantile of
the OLL.

ODP model Mack model

YEE approach LM approach LM approach

mean stdd min max mean stdd min max mean stdd min max

disc RAV 121.3 16.2 101.1 174.3 117.1 12.6 100.2 155.2 110.8 10.3 98.4 146.8

BE 92.0 0.8 90.2 93.5 92.0 0.8 90.2 93.5 92.0 0.8 90.2 93.5

RC75 27.0 15.4 8.2 78.2 22.8 11.8 7.4 59.1 17.1 9.4 5.7 50.2

RC90 24.7 14.3 7.4 73.2 20.5 10.6 6.6 54.1 15.3 8.4 5.2 44.9

ϕ-disc RAV 123.1 17.2 101.5 176.9 118.3 13.3 100.6 157.2 111.0 10.7 98.4 150.0

BE 92.0 0.8 90.2 93.5 92.0 0.8 90.2 93.5 92.0 0.8 90.2 93.5

RC75 28.9 16.4 8.6 80.8 24.0 12.5 7.7 61.1 17.2 9.8 5.7 53.3

RC90 26.5 15.2 7.9 75.8 21.7 11.4 7.0 56.1 15.5 8.7 5.1 47.6

undisc RAV 133.9 18.9 110.3 192.9 128.6 14.7 109.3 171.4 120.6 11.5 106.9 163.1

BE 100.0 0.0 100.0 100.0 100.0 0.0 100.0 100.0 100.0 0.0 100.0 100.0

RC75 31.6 17.9 9.4 88.4 26.3 13.7 8.4 66.9 18.8 10.7 6.2 58.2

RC90 29.2 16.8 8.7 83.3 23.9 12.6 7.7 61.8 17.0 9.6 5.6 52.4

flat RAV 133.9 18.9 110.3 192.9 128.6 14.7 109.3 171.4 120.6 11.5 106.9 163.1

BE 100.0 0.0 100.0 100.0 100.0 0.0 100.0 100.0 100.0 0.0 100.0 100.0

RC 33.9 18.9 10.3 92.9 28.6 14.7 9.3 71.4 20.6 11.5 6.9 63.1

Table 4.28: Risk capitals derived by 99.5-th quantiles given risk margins derived by 75-th
and 90-th quantiles.

Risk capitals and risk margins as the costs of capital. Table 4.29 illustrates the out-
comes of risk margin computations defined as the cost of the reserve risk capital, consistently
with the formulas summarized in table 1.3. Also in this case the RAV has been defined as
the 99.5-th quantile of the RRV and the risk premium to the shareholders has been fixed at
6%. The results confirm that under these assumptions the risk margins derived as the cost
of capital with the YEE approach are not very different, but typically lower than the corre-
sponding risk margins as 75-th quantile provided in table 4.27. For example, the average RM
reported in table 4.29 for the discounted case is 4.4, while the average for RM75 in table 4.27
is 5.7. The minimum and the maximum value in the sample for the cost-of-capital approach
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ODP model Mack model

YEE approach LM approach LM approach

mean stdd min max mean stdd min max mean stdd min max

disc RAV 121.3 16.2 101.1 174.3 117.1 12.6 100.2 155.2 110.8 10.3 98.4 146.8

BE 92.0 0.8 90.2 93.5 92.0 0.8 90.2 93.5 92.0 0.8 90.2 93.5

RC 27.7 15.4 8.5 78.0 23.7 12.0 7.7 60.0 17.8 9.7 6.0 51.8

RM 4.4 2.5 1.3 12.8 3.8 2.0 1.2 9.9 2.8 1.5 1.0 8.2

ϕ-disc RAV 123.1 17.2 101.5 176.9 118.3 13.3 100.6 157.2 111.0 10.7 98.4 150.0

BE 92.0 0.8 90.2 93.5 92.0 0.8 90.2 93.5 92.0 0.8 90.2 93.5

RC 29.4 16.3 8.9 80.5 24.8 12.7 8.0 61.8 17.9 10.0 6.0 54.8

RM 4.7 2.7 1.4 13.3 4.0 2.1 1.3 10.2 2.8 1.6 0.9 8.7

undisc RAV 133.9 18.9 110.3 192.9 128.6 14.7 109.3 171.4 120.6 11.5 106.9 163.1

BE 100.0 0.0 100.0 100.0 100.0 0.0 100.0 100.0 100.0 0.0 100.0 100.0

RC 32.0 17.8 9.7 87.6 27.0 13.8 8.7 67.3 19.5 10.9 6.5 59.5

RM 5.6 3.2 1.7 15.7 4.7 2.5 1.5 12.1 3.4 1.9 1.1 10.3

flat RAV 133.9 18.9 110.3 192.9 128.6 14.7 109.3 171.4 120.6 11.5 106.9 163.1

BE 100.0 0.0 100.0 100.0 100.0 0.0 100.0 100.0 100.0 0.0 100.0 100.0

RC 33.9 18.9 10.3 92.9 28.6 14.7 9.3 71.4 20.6 11.5 6.9 63.1

RM 5.9 3.4 1.8 16.6 5.0 2.6 1.6 12.8 3.6 2.0 1.2 10.9

Table 4.29: Risk margins as the cost of risk capital derived by 99.5-th quantiles (spread
s = 6%).

is 1.3 and 12.8, respectively; the corresponding values for the quantile approach are for 2.1
and 13.4. The standard deviation is equal in the two cases. An analogous dominance relation
holds comparing corresponding figures under both the ϕ-discounted and the undiscounted
approach.

The table also confirms the general finding that for a given approximation (discounted,
ϕ-discounted, undiscounted and flat) risk measures provided by ODP with the YEE approach
are typically higher than risk measures obtained under ODP with the LM approach; which in
turn are higher than that produced by the Mack model with the corresponding approximation.

These results could be of some concern for fairly implementing a market regulation based
on the use of internal models.

4.6 A comparison with the QIS2 capital requirements

It could be interesting to compare the risk capital figures provided by the stochastic models
with the solvency capital requirement (SCR) for reserve risk computed as prescribed by
CEIOPS in the Solvency 2 framework. In the technical specifications for CEIOPS’ second
Quantitative Impact Study (QIS2) issued in May [9], a factor-based approach is proposed
where the SCR for reserve risk K(QIS) is derived following the following steps.

a) 11 lines of business (LoB) for non-life insurance are defined; for each LoB k a market-wide
volatility factor fk is specified.

b) The LoB volatility for each company is computed as:

σk = fk s(R̃k) ,

where R̃k is the “provision for claims outstanding” (gross of reinsurance) of the LoB, and
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the size factor s is a non-increasing function of R̃k, specified as:

s(R̃k) =





1 if R̃k ≥ 100,
10√
R̃k

if 100 > R̃k ≥ 20,

10√
20

if R̃k < 20,

where R̃k is expressed in million Euros.

c) The volatility (for unit of provision) σ relative to the non-life business is computed ag-
gregating the individual volatilities as:

σ2 =
11∑

k=1

11∑

j=1

wk wj σk σj ckj ,

where {ckj} is a specified correlation matrix across LoBs, and the weights are defined as:

wk :=
Rk∑11
j=1 Rj

,

Rk being the net provision for claims outstanding of LoB k.

d) The “Basic Solvency Capital Requirement” BSCR for the reserve risk is derived as:

BSCR = ρ(σ)

11∑

k=1

Rk ,

where the ρ function has the form:

ρ(x) :=
0.99 − N

(
N−1(0.99) −

√
log(x2 + 1)

)

0.01
, (4.2)

N(x) being the cumulative distribution function of the standard normal variate.

e) The SCR is finally obtained as:

K(QIS) := BSCR − PL ,

where PL represents the “expected profit or loss arising from next year’s business”. As
specified in the technical document (pp. 20-22), PL is given by the sum of a component
PLprem relative to premiums and a component PLres relative to reserves. The PLprem

component expresses the expectation of the difference between the net earned premiums
and the corresponding costs (claims payments plus expenses) in the forthcoming year.
The quantity PLres is essentially given by the fraction of the risk margin allocated in the
year τ = 1 (as a proportion of the claims provisions). The two components are detracted
at the overall business level; however they are defined and computed for each of the LoBs.

In the QIS2 framework, MTPL insurance is the LoB k = 2 and the corresponding market-
wide volatility factor is f2 = 0.15. Since we are only concerned here with the MTPL, the
SCR computations have been performed at a single-LoB level, skipping step (c) (or posing
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Figure 4.12: The size factor function

Rk = 0 for k 6= 2) and considering K(QIS) for MTPL as a stand-alone risk capital. Thus also
the expected profit or loss PL have been computed for the single LoB.

The volatility factor f2 must be multiplied by the company-specific size factor; the form
of this function is illustrated in figure 4.12.

It can be easily shown (see for ex. [6], pp. 383) that the expression (4.2) of the ρ(x)
function is the TailVaR at the 99% confidence level of a lognormal random variable with
mean 1 and standard deviation x. In the technical document a broad assumption is explicitly
made that TailVaR 99% is “an equivalent level of prudence” of VaR 99.5% (p. 4). Thus risk
capital figures provided by stochastic models can be consistently compared with the SCR
prescribed by CEIOPS defining the RAV as the quantile at the level α = 99.5%.

Following the QIS2 prescriptions PCO has been computed as the 75-th quantile of the
discounted OLL; that is:

R2 := Q(75)(D) ;

the percentile has been taken on probability distribution produced by the ODP model. The
PLres component of the expected profit or loss has been obtained as3:

PLres :=
[
Q(75)(D) − M0

] Y 1

L
.

We did not considered the PLprem component; reinsurance effects have been also ignored

assuming R̃2 = R2.

In table 4.30 we reported the MTPL reserve risk capital of all the companies in the
selected sample, computed following QIS2 prescriptions and applying all the 12 methods
and approximations previously described: discounted, ϕ-discounted, undiscounted and flat

3This quantity turns out to be very similar to the first year risk loading γ1 defined in section 1.2 and
specified by the allocation rule (1.50).
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QIS2 ODP model Mack model

CodCv YEE approach LM approach LM approach

disc ϕ-dsc undsc flat disc ϕ-dsc undsc flat disc ϕ-dsc undsc flat

1 43.81 8.49 8.93 9.69 10.27 7.72 8.05 8.73 9.26 6.02 5.97 6.47 6.86

2 44.00 10.92 11.78 12.69 13.45 9.99 10.32 11.12 11.79 9.27 9.42 10.14 10.75

3 43.82 10.91 11.67 12.66 13.42 10.24 10.67 11.57 12.27 10.19 10.00 10.84 11.49

4 44.28 12.56 13.26 14.16 15.01 10.98 11.22 11.98 12.70 7.99 8.02 8.56 9.08

5 43.75 11.75 12.42 13.52 14.33 10.87 11.28 12.28 13.02 8.70 8.56 9.32 9.88

6 43.49 12.89 13.66 14.94 15.84 10.93 11.53 12.62 13.37 8.07 7.98 8.73 9.25

7 43.86 13.39 14.09 15.34 16.26 12.11 12.38 13.47 14.28 9.40 9.31 10.13 10.74

8 43.89 15.76 16.46 17.89 18.96 14.23 14.62 15.89 16.84 11.25 11.17 12.13 12.86

9 44.24 16.16 17.10 18.28 19.38 14.26 14.89 15.92 16.87 11.30 11.25 12.02 12.74

10 43.82 15.25 16.20 17.62 18.68 14.50 15.11 16.45 17.43 11.43 11.68 12.71 13.47

11 44.31 16.83 17.63 18.89 20.03 16.04 16.55 17.73 18.80 13.52 13.58 14.55 15.42

12 44.28 18.53 19.61 21.04 22.30 16.11 16.74 17.96 19.04 13.95 13.97 14.99 15.89

13 43.87 18.14 20.12 21.91 23.23 16.01 17.06 18.58 19.69 13.61 13.50 14.71 15.59

14 43.89 18.96 20.17 22.02 23.34 16.82 17.69 19.31 20.47 11.34 11.27 12.30 13.04

15 43.80 19.18 20.10 21.85 23.16 17.21 18.09 19.67 20.85 10.32 10.21 11.10 11.76

16 44.11 18.01 19.09 20.70 21.94 17.26 18.29 19.83 21.02 14.45 14.39 15.60 16.54

17 43.55 20.11 21.45 23.62 25.04 17.26 18.14 19.98 21.18 19.41 20.54 22.62 23.97

18 44.02 20.72 22.26 24.13 25.58 18.67 19.81 21.48 22.77 12.63 12.76 13.84 14.67

19 43.98 24.63 26.26 28.68 30.40 20.62 21.83 23.85 25.28 13.10 13.12 14.33 15.19

20 43.76 25.71 27.30 29.98 31.78 21.00 22.33 24.52 25.99 13.11 13.11 14.40 15.27

21 44.52 25.69 26.88 28.86 30.59 22.20 22.84 24.52 25.99 17.73 17.79 19.11 20.25

22 44.11 24.36 25.95 28.09 29.78 22.06 23.13 25.05 26.55 14.92 14.87 16.10 17.07

23 43.95 25.62 27.44 30.09 31.89 22.79 24.06 26.38 27.96 13.91 13.83 15.17 16.08

24 44.12 25.86 27.77 29.99 31.79 23.57 24.58 26.54 28.13 19.83 20.18 21.79 23.10

25 43.80 29.86 32.22 35.32 37.43 24.60 26.26 28.79 30.52 14.83 15.17 16.63 17.62

26 44.30 29.19 31.55 33.99 36.03 26.14 26.92 29.01 30.75 22.27 22.86 24.64 26.11

27 65.23 27.81 29.93 32.22 34.15 26.05 26.96 29.02 30.76 23.32 23.87 25.70 27.24

28 52.07 34.26 35.98 38.93 41.27 27.67 28.76 31.12 32.98 16.14 16.11 17.43 18.47

29 59.43 32.12 33.80 36.35 38.53 27.91 28.97 31.15 33.02 24.23 24.66 26.52 28.11

30 57.75 30.83 32.74 36.27 38.45 28.25 29.58 32.77 34.73 22.74 23.44 25.97 27.53

31 44.22 36.99 40.27 43.80 46.43 28.75 31.00 33.72 35.74 18.58 18.48 20.10 21.31

32 63.41 37.97 40.45 44.17 46.82 31.75 33.62 36.71 38.91 17.65 18.01 19.67 20.85

33 44.04 45.62 47.99 52.69 55.85 35.08 36.56 40.13 42.54 20.74 20.54 22.55 23.90

34 71.11 43.20 44.55 48.75 51.67 35.92 36.70 40.16 42.57 18.62 18.67 20.42 21.65

35 45.86 44.10 47.73 51.61 54.71 36.35 37.66 40.72 43.16 43.69 44.76 48.41 51.31

36 44.03 41.18 43.81 47.41 50.25 36.18 38.20 41.34 43.82 36.95 36.34 39.33 41.69

37 62.93 43.08 46.34 50.31 53.33 39.40 41.48 45.03 47.73 51.78 54.82 59.52 63.09

38 84.94 55.90 58.21 62.95 66.72 47.53 49.98 54.04 57.29 31.61 31.65 34.23 36.28

39 71.82 66.47 73.16 79.62 84.40 52.46 57.86 62.97 66.74 25.23 24.74 26.92 28.54

40 45.68 77.99 80.48 87.62 92.87 59.97 61.85 67.33 71.37 26.62 26.64 29.00 30.74

Table 4.30: Reserve risk capitals as a percent of the undiscounted BE. Values from QIS2 and from stochastic
models under different approaches.

approach, with both the YEE and the LM method for the ODP model, and with LM method
for the DFCL. The risk capitals under stochastic models are obtained assuming the RAV as
the 99.5-th quantile of the RRV and the risk margins have been defined as the cost of capital
(with the usual 6% spread); hence the formulas in table 1.3 have been used.
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Figure 4.13: Reserve risk capitals following QIS2 and under stochastic models – QIS2: 99%
expected shortfall; stochastic: derived by 99.5% quantiles (RM as CoC, s = 6%)

As in the previous tables, the risk capitals from stochastic models are expressed as a
percent of L; the QIS2 risk capitals are expressed as a percent of the statutory reserve,
which is the same as to report the values of the ρ function (in percent). Companies are
sorted by CodCv, that is by increasing values of the Cv(L) provided by the ODP model.
Data in table 4.30 are graphically illustrated in figure 4.13, where we also reported the usual
representation of the conventional of statutory reserve of the dimensional classes (just defined
as 1500, 500, 100 and 50 for class 1, 2, 3 and 4, respectively).

The SCR values are nearly equal for companies with reserve level larger than 100 million
Euros (size factor s(R̃k) = 1), since the PL term, which is the only entity-specific parameter
for these companies, is very low with respect to the BSCR. For almost all these companies an
internal model based on any of the stochastic approaches considered should allow a sensible
reduction of the capital requirement with respect to the QIS2 prescriptions.
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Chapter 5

Applying the stochastic models to
inflation-adjusted data

5.1 Adjusting for past inflation

Claim costs are typically subject to inflation. Usually the claims inflation can be considered
as a composition of the economic inflation (the usual price or wage inflation) and a super-
imposed inflation which is an escalation of claim costs specific of the line of business under
consideration. When the triangles of paid losses are expressed in terms of historical costs,
the traditional run-off techniques for loss reserving implicitly assume the trend of past claims
inflation as embedded into the cost development rule; therefore projected paid losses will
include the inflation trend experienced in the past. The same effect will be observed under a
stochastic loss reserving model, with the additional consequence that the variability of past
inflation can influence also the variability of the predictive OLL distribution.

In order to control these inflactionary effects the run-off techniques (both deterministic
and stochastic) can be applied in the following three steps:
– estimate a time series of claims inflation rates for the specific line of business and escalate

the paid losses on the same diagonal of the past triangle by the corresponding inflation
rate;

– apply the loss reserving model to the triangle of inflation-adjusted paid losses;
– escalate the projected paid losses under a model (deterministic or stochastic) for future

inflation.
Under a stochastic approach the model for projected inflation should allow both for expected
inflation and for inflation volatility and the last two steps should be integrated into an un-
certainty model for both technical cost development and claims inflation.

5.1.1 Estimation of historical claims inflation

In order to derive a time series of past inflation for MTPL claim costs also data on claim
counts have been considered. For each company the loss payments Ci,j in the past triangle
have been divided by the corresponding number Ni,j of paid claims and a triangle of (average)
cost per claim paid(CPCP):

Ci,j :=
Ci,j

Ni,j
, i = 1, 2, . . . , n , j = 1, 2, . . . , di ,
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has been obtained. For each DY j = 1, 2, . . . , n the set of CPCP:

{
Ci,j , i = 1, 2, . . . , dj

}
,

provides the time series of the average unitary costs experienced by the company in the
accounting year i for claims paid with a delay j. On the chosen triangles, the time series{
Ci,j

}
will contain dj = 10 − j + 1 observations, from the accounting year 1994 + j to the

accounting year 2004. In particular, for j = 1 the time series is obtained of ten CPCP values
observed from 1995 (i = 1) to 2004 (i = 10) for claims paid in the first development year1.

In figure 5.1 the time series
{
Ci,1, i = 1, 2, . . . , 10

}
of the CPCP experienced by the

selected companies for paid losses with one development year are illustrated. The same
figures for loss payments made in the second development year are reported in figure 5.2.

For each DY we also computed the average of the CPCP taken over all the companies
(with equal weights). The time series of these average costs for DY from 1 to 9 are illustrated
in figure 5.3. As expected, the CPCP dramatically increase with the payment delay. Moreover
the time variability of CPCP is also strongly increasing with DY, reflecting the higher uncer-
tainty affecting the claim cost of more delayed payments. It seems reasonable to conjecture
that the information on the systematic component of the MTPL claims inflation is essentially
contained in the time evolution of the CPCP for the first DY. Hence the estimation of claims
inflation has been derived only by the time series

{
Ci,1

}
. For each company the time series of

annual rates of inflation from 1996 to 2004 have been derived by the corresponding ten-year
time series of costs and the inflation rates in the same calendar year i have been averaged
over all the companies using different weighting criteria. The time series of annual rates of
inflation ri obtained in this way are reported in table 5.1 where:

· r
(E)
i : equally weighted average rate;

· r
(R)
i : average rate weighted by statutory reserve Rs;

· r
(P )
i : average rate weighted by total paid losses S;

· r
(U)
i : average rate weighted by total ultimate loss U projected by the chain-ladder;

· r
(e)
i : economic inflation rate.

On the bottom lines of the table the average annual rates (geometric mean) of claims
inflation for the overall time period 1996 to 2004 are also provided, together with the corre-
sponding volatilities. The time series of the different inflation rates are illustrated in figure
5.4. In all the series the annual inflation rates are high and display high variability with
respect to economic inflation; in each case the average annual rate of claims inflation on the
overall period is greater than 9%.

It could be interesting to derive a rough estimate of the average cost per claims paid in
different DY. Given the figures in table 5.1, a global inflation rate r = 9% could be used for
escalating all the costs Ci,j , providing:

C
∗
i,j := Ci,j (1 + r)(i−1) .

These amounts can be assumed as expressed in 2004 money values and can then be correctly

1The CPCP values were computed for only 39 companies in the selected sample, since count data contained
an evident error for one company.
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Figure 5.1: Costs per claims paid in the first development year

Figure 5.2: Costs per claims paid in the second development year
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Figure 5.3: Average costs per claims paid in different DY

year r(E) r(Rs) r(P ) r(U) r(e)

1996 7.66 5.99 5.70 5.76 3.90
1997 7.26 6.33 6.55 6.50 1.70
1998 10.25 11.60 11.60 11.60 1.80
1999 7.07 5.96 6.35 6.27 1.60
2000 7.84 6.68 6.80 6.77 2.60
2001 13.50 12.82 13.82 13.60 2.70
2002 10.49 9.29 9.19 9.21 2.40
2003 10.11 9.29 9.25 9.26 2.50
2004 10.23 14.99 13.26 13.65 2.00

average 9.36 9.17 9.13 9.14 2.35

volatility 1.91 3.01 2.83 2.86 0.69

Table 5.1: Inflation rates

averaged, for each DY, over all the accounting years from 1995 to 2004.

C
∗
j :=

1

dj

dj∑

i=1

C
∗
i,j .

The equally weighted average over all companies of the inflation adjusted CPCP C
∗
j as a

function of DY is illustrated in figure 5.5 with dots joined by solid line. The average CPCP
plus and minus one standard deviation, computed on the selected company sample, are also
reported with dotted lines.

98



Figure 5.4: Inflation rates

Figure 5.5: Inflation adjusted costs per claim paid in different DY
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5.1.2 Adjusting for changes in speed of finalization

Since claim payments made in the same accounting year typically differ by large amounts
over different DY, the observation of past claims inflation can be strongly biased if changes
of the speed of finalization have been introduced by the companies. In fact a change of the
CPCP observed in a given calendar year could be only partially a consequence of calendar
time variations of the general claims cost level if an anticipation or a delay in the finalization
of more costly claims took place. If some information is available on the historical speed of
finalization, under appropriate assumptions some adjustment for these effects can be made
on the observed claims inflation.

In this analysis we used a simple model for taking into account historical changes in speed
of finalization. The model uses aggregate data by accounting year expressing the number of
claims finalized in DY j as a fraction of the number of claims still open at the beginning of DY
j. Under some simplifying assumptions a series of correction factors is provided suitable for
adjusting the observed inflation factors of claims paid in the first DY. A detailed description
of the model is provided in section B of the Appendix.

5.1.3 Choosing the time series of past inflation

In principle, the possibility exists that the choice of the weighting method in averaging past
inflation rates over the companies introduces an undesirable distortion in the estimation of
the required reserve, as a consequence of systematically different changes in projected losses
for companies with different portfolio size.

To control this possible effect the triangles of paid losses of companies in the sample have

been escalated using the different time series {r(x)
i } of inflation rates reported in table 5.1

and the corresponding best estimate of the overall losses L
(x)

has been computed applying
the chain-ladder algorithm to the inflation adjusted triangles. The percentage differences

L
(x)

/L − 1 with respect to the predicted values obtained by the unadjusted triangles have
then been regressed over the statutory reserve Rs. In all the linear regressions the slope
coefficient resulted not significantly different from zero. Over the different averaging criteria
the r-squared ranged between 0.013 and 0.015. Given these results no systematic distortion
effect on the expected OLL seems to be determined by the weighting method.

An identical analysis has been performed using as regressors the percentage differences
Pstd(L(x))/Pstd(L) − 1 and Q(75)(L(x))/Q(75)(L) − 1, where the prediction errors were
derived by the DFCL model and the quantiles were obtained assuming a lognormal underlying
distribution. Also in these cases no significant correlation effect with the portfolio size has
been detected.

5.1.4 Applying the stochastic models to inflation adjusted data

In the following applications the time series {r(P )
i } of the average inflation rates weighted with

the total paid losses has been chosen as a proxy of the claims inflation. The corresponding
average inflation rate over the observation period 1996-2004 is r(P ) = 9.13%. The ten-year
triangles of paid losses of the companies in the selected sample have been escalated using

the inflation rates {r(P )
i } and both the ODP and the DFCL model have been applied to that

100



data2.
The chain-ladder algorithm has been applied to the inflation adjusted triangles, providing

a new estimate L
∗

of the total undiscounted OLL for each company in the selected sample.
The total BE values (in million Euros) for the 4 dimensional classes and for the overall
sample are reported in table 5.2 and compared with the corresponding values from unadjusted
triangles.

Class Rs L L
∗

L − L
∗

(%)

1 15,114.43 14,116.69 11,216.05 2,900.64 20.55
2 7,257.39 7,604.49 6,033.41 1,571.09 20.66
3 1,541.70 1,556.26 1,233.59 322.68 20.73
4 128.45 135.65 108.97 26.68 19.66

total 24,041.97 23,413.09 18,592.01 4,821.08 20.59

Table 5.2: Projected OLL from inflation-adjusted paid losses and historical paid losses

On the overall sample it results a 20.59% reduction of OLL estimate due to the inflation
adjustment of the historical data; the effect is roughly similar in the four classes.

5.2 Applying stochastic loss reserving models to inflation ad-
justed data

5.2.1 Projecting future paid losses under stochastic inflation

Future paid losses are essentially real in nature, therefore they are necessarily exposed to
inflation. Since the past data have been escalated by past inflation, projected future payments
can be considered as nominal amounts, that is do not include any rescaling for future inflation.
Therefore a model for future inflation must be used to provide a reliable assessment of the
OLL.

5.2.2 The stochastic inflation model

Future claims inflation has been modelled using a simple lognormal model. Let us denote by:

C ′
i,di+τ , τ = 1, 2, . . . , n − 1 , i = τ + 1, . . . , n ,

the r.v. representing the nominal value of future claim payment at the year-end τ for claims
of AY i. The predictive distribution of C ′

i,di+τ can be thought of as being provided by a
specified model for loss reserving applied to inflation adjusted data. It is assumed that the
effective claim payment is given by:

C ′′
i,di+τ = C ′

i,di+τ pτ ,

where the inflation index process pθ (θ ≥ 0) is a geometric Brownian motion described by
the stochastic differential equation:

dpθ = µ pθ dθ + ω pθ dZθ ,

2From a regression analysis it resulted that an escalation of all payments at an annual inflation rate 9.13%
flat can introduce dependencies of changes in the variability of projected payments on the company size. Hence
it is important that the paid losses of each calendar year are escalated by the corresponding inflation factor.
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with p0 = 1. The process Zθ is a standard Brownian motion independent of the claim
development process, µ is the (continuously compounded) expected inflation rate and ω > 0
is the volatility of the inflation index. The first two moments of pτ at each year-end have the
well-known expressions:

E0(pτ ) = eµ τ , Var0(pτ ) = e2 µ τ
(
eω2 τ − 1

)
. (5.1)

Remark. If the present value of the real payoff C ′′
i,di+τ is required the appropriate discounting

rate must be used. In general the time zero price V(0;Y ′′
τ ) of a real payoff Y ′′

τ maturing at
time t = τ must be derived under an arbitrage-free model for real interest rates. Examples
can be found in [32].

The inflation index can be applied to the total payments of each future year:

Y ′
τ :=

n∑

i=τ+1

C ′
i,di+τ , τ = 1, 2, . . . , n − 1 ,

in order to obtain the escalated values:

Y ′′
τ = Y ′

τ pτ ,

and the overall (undiscounted) OLL after inflation are given by:

L′′ :=
n−1∑

τ=1

Y ′′
τ .

5.2.3 Including the inflation process

By the independence assumption the stochastic inflation model can be easily incorporated in
the typical loss reserving models.

Since the ODP model is applied by simulation the projected inflation can be simply
included multiplying the simulated value C ′

i,di+τ in each cell of the diagonal τ by a r.v.
drawn by a lognormal distribution with mean and variance given by (5.1).

As concerning the DFCL model, it is easily shown that the appropriate expressions for
the first two moments of the estimates of Y ′′

τ are:

Ŷ ′′
τ = Ŷ ′

τ eµ τ ,

and:

Pvar
(
Ŷ ′′

τ

)
=

[
Pvar

(
Ŷ ′

τ

)
+ (Ŷ ′

τ

)2
]
e2 (µ+ω2) τ −

(
Ŷ ′

τ

)2
e2 µ τ .

A closed form expression for the total prediction variance Pvar
(
L̂′′

)
is rather cumbersome.

A simple approximation can be obtained denoting by:

Pstd(0)
(
L̂′) :=

√√√√
n−1∑

τ=1

Pvar
(
Ŷ ′

τ

)
, (5.2)
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the uncorrelated total prediction error, and by:

Pstd(1)
(
L̂′) :=

n−1∑

τ=1

Pstd
(
Ŷ ′

τ

)
, (5.3)

the perfectly correlated total prediction error. Since the expression Pstd
(
L̂′

)
of the effective

(i.e. partially correlated) total prediction error is available, one can assume the approximate
proportionality property:

Pstd
(
L̂′′) ≈ Pstd(0)

(
L̂′′) + c

[
Pstd(1)

(
L̂′′) − Pstd(0)

(
L̂′′)] ,

where:

c :=
Pstd

(
L̂′

)
− Pstd(0)

(
L̂′

)

Pstd(1)
(
L̂′

)
− Pstd(0)

(
L̂′

) , (5.4)

and where the expressions of Pstd(0)
(
L̂′′

)
and Pstd(1)

(
L̂′′

)
are the analogous of (5.2) and

(5.3), respectively.

5.2.4 Results from models with stochastic inflation

The ODP and the DFCL model with stochastic inflation have been applied to the inflation
adjusted triangles of paid losses of the companies in the selected sample assuming an annual
rate of inflation of 7.5%, corresponding to a continuously compounded rate µ = log 1.075 =
0.723, and an inflation volatility ω = 0.04.

Table 5.3 contains some preliminary results on the undiscounted OLL L′′ obtained by the
ODP model with inflation (also in this case a simplified notation has been used omitting the
symbol “̂”). For each company in the selected sample we reported:

· the percentage difference between the best estimate L
∗

from inflation adjusted data with-
out projected inflation and the best estimate L from historical data:

∆L
∗

:=
L
∗ − L

L
;

· the percentage difference between the best estimate L
′′

from inflation adjusted data with
projected inflation and the best estimate L from historical data:

∆L
′′

:=
L
′′ − L

L
;

· the percentage difference between the standard deviation of L′′ and the standard deviation
of L:

∆Pstd :=
Pstd(L′′) − Pstd(L)

Pstd(L)
;

· the percentage difference between the α-quantile of L′′ and the α-quantile of L:

∆Q(α) :=
Q(α)(L′′) − Q(α)(L)

Q(α)(L)
.
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As usual, companies are sorted by CodCv code. Also the average values are reported, the
averages being weighted by the value of L.

The same results obtained by the DFCL model with inflation are reported in table 5.4;
also in this case companies are sorted by the coefficient of variation of the ODP model.

It results that the 20.59% decrease of the best estimate obtained by inflation adjusted data
without projected inflation reduces to 3.83% assuming a future inflation at 7.5% p.a. flat.
The assumption of inflation volatility at 4% p.a. seems rather conservative if one considers
the effect on the OLL variability: on the average, the standard deviation of the OLL is
increased by 39.35% in the ODP model and by 39.59% in the DFCL model. Consequently
the required reserve decrease is reduced under the quantile approach. In the ODP model
the decrease becomes 2.26% and 0.68% defining R∗ as the 75-th and the 90-th percentile,
respectively; the corresponding reductions for the DFCL are 2.60% and 1.35%.

The overall values by dimensional classes of the required reserve defined as mean, 75-th
quantile and 90-th quantile of L′′ are reported in tables 5.5 and 5.6 for the two models. The
differences with respect to the corresponding values of R∗ defined on the distribution of L
derived from historical data are also given. As usual, values are expressed in million Euros.
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CodCv Class ∆L
∗

∆L
′′

∆Pstd ∆Q(75) ∆Q(90)

(%) (%) (%) (%) (%)

1 1 -19.79 -2.89 83.83 -1.11 0.95

2 1 -18.64 -2.89 57.98 -1.14 0.56

3 1 -20.01 -3.23 58.49 -1.50 0.38

4 1 -21.83 -4.83 45.19 -3.35 -1.99

5 2 -17.82 -3.49 36.83 -2.34 -1.13

6 2 -21.45 -3.70 51.49 -1.92 -0.30

7 1 -20.58 -3.22 52.11 -1.51 0.20

8 1 -16.88 -2.16 44.99 -0.40 1.46

9 2 -20.51 -3.28 41.01 -1.64 0.24

10 1 -19.82 -2.74 47.34 -0.79 1.30

11 1 -21.61 -4.99 23.39 -3.64 -2.76

12 2 -17.53 -2.34 33.81 -0.98 0.74

13 2 -23.18 -6.43 26.82 -5.04 -3.59

14 2 -22.10 -4.62 25.04 -3.47 -1.90

15 2 -16.67 -1.17 31.16 0.18 1.82

16 2 -22.71 -6.40 21.27 -5.17 -3.76

17 2 -23.41 -4.83 22.30 -3.55 -2.36

18 3 -20.03 -3.40 27.47 -2.05 -0.23

19 2 -21.26 -2.55 29.04 -0.95 0.71

20 3 -22.25 -4.82 24.19 -3.28 -1.59

21 2 -21.84 -3.40 25.64 -1.83 -0.10

22 2 -21.67 -5.67 17.13 -4.40 -3.05

23 2 -18.70 -3.32 21.65 -2.01 -0.54

24 2 -20.58 -4.78 14.93 -3.66 -2.48

25 3 -22.69 -4.83 16.04 -3.58 -2.35

26 3 -18.69 -2.85 15.17 -1.82 -0.58

27 3 -21.13 -5.78 9.63 -4.76 -3.81

28 3 -25.00 -5.75 12.84 -4.21 -3.25

29 3 -18.74 -2.09 23.92 -0.70 1.72

30 3 -17.87 -2.23 23.14 -0.54 1.36

31 3 -20.81 -3.12 23.96 -0.98 0.82

32 3 -20.75 -3.62 22.35 -1.68 0.41

33 4 -18.79 -0.17 20.24 1.35 3.35

34 1 -22.92 -4.89 8.42 -3.70 -2.82

35 2 -18.19 -1.73 35.15 1.61 4.58

36 3 -20.59 -4.61 25.49 -2.33 0.34

37 3 -19.81 -2.89 12.13 -1.77 -0.15

38 4 -19.13 -2.56 17.02 -0.60 1.53

39 4 -21.43 -5.07 8.54 -3.11 -1.66

40 3 -17.90 0.34 14.28 2.28 4.24

average -20.59 -3.83 39.35 -2.26 -0,68

Table 5.3: ODP model with stochastic inflation - Differences w.r.t values without modelled
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CodCv Class ∆L
∗

∆L
′′

∆Pstd ∆Q(75) ∆Q(90)

(%) (%) (%) (%) (%)

1 1 -19.79 -2.89 75.59 -1.59 -0.33

2 1 -18.64 -2.89 43.23 -1.74 -0.60

3 1 -20.01 -3.23 57.57 -1.62 -0.01

4 1 -21.83 -4.83 51.95 -3.52 -2.22

5 2 -17.82 -3.49 37.72 -2.60 -1.74

6 2 -21.45 -3.70 54.44 -2.42 -1.18

7 1 -20.58 -3.22 58.44 -1.68 -0.15

8 1 -16.88 -2.16 38.84 -0.97 0.22

9 2 -20.51 -3.28 34.61 -2.12 -0.96

10 1 -19.82 -2.74 48.39 -1.24 0.26

11 1 -21.61 -4.99 35.94 -3.88 -2.78

12 2 -17.53 -2.34 28.53 -1.28 -0.21

13 2 -23.18 -6.43 32.47 -5.08 -3.71

14 2 -22.10 -4.62 28.78 -3.63 -2.64

15 2 -16.67 -1.17 30.33 -0.05 1.07

16 2 -22.71 -6.40 21.12 -5.40 -4.38

17 2 -23.41 -4.83 8.77 -4.16 -3.45

18 3 -20.03 -3.40 25.46 -2.45 -1.49

19 2 -21.26 -2.55 32.55 -1.35 -0.15

20 3 -22.25 -4.82 27.66 -3.71 -2.60

21 2 -21.84 -3.40 28.03 -2.28 -1.15

22 2 -21.67 -5.67 17.86 -4.79 -3.89

23 2 -18.70 -3.32 17.55 -2.41 -1.48

24 2 -20.58 -4.78 9.09 -4.12 -3.42

25 3 -22.69 -4.83 17.20 -3.98 -3.12

26 3 -18.69 -2.85 14.58 -1.90 -0.88

27 3 -21.13 -5.78 4.23 -5.25 -4.69

28 3 -25.00 -5.75 9.04 -4.94 -4.07

29 3 -18.74 -2.09 27.18 -0.92 0.28

30 3 -17.87 -2.23 19.59 -1.02 0.29

31 3 -20.81 -3.12 20.41 -2.08 -1.00

32 3 -20.75 -3.62 31.19 -2.06 -0.42

33 4 -18.79 -0.17 21.01 0.79 1.79

34 1 -22.92 -4.89 8.20 -4.24 -3.56

35 2 -18.19 -1.73 36.16 0.94 4.23

36 3 -20.59 -4.61 22.32 -2.46 0.30

37 3 -19.81 -2.89 3.82 -2.28 -1.49

38 4 -19.13 -2.56 19.49 -1.11 0.56

39 4 -21.43 -5.07 21.53 -3.59 -1.96

40 3 -17.90 0.34 18.50 1.41 2.59

average -20.59 -3.83 39.59 -2.60 -1.35

Table 5.4: DFCL model with stochastic inflation - Differences w.r.t values without modelled
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Class Rs L
′′

Q(75)(L′′) Q(90)(L′′) ∆L
′′

∆Q(75)(L′′) ∆Q(90)(L′′)

1 15,114.43 13,585.94 14,345.86 15,136.87 -530.74 -317.12 -95.66
2 7,257.39 7,298.27 7,802.58 8,323.75 -306.25 -200.01 -73.29
3 1,541.70 1,499.35 1,643.87 1,800.98 -56.92 -35.15 -6.47
4 128.45 132.42 149.56 169.12 -3.22 -0.90 2.09

total 24,041.97 22,515.98 23,941.88 25,430.73 -897.11 -553.17 -173.33

Table 5.5: ODP model with stochastic inflation

Class Rs L
′′

Q(75)(L′′) Q(90)(L′′) ∆L
′′

∆Q(75)(L′′) ∆Q(90)(L′′)

1 15,114.43 13,585.94 14,170.93 14,749.40 -530.74 -360.16 -180.99
2 7,257.39 7,298.27 7,685.44 8,083.37 -306.23 -225.16 -131.59
3 1,541.70 1,499.35 1,598.90 1,704.52 -56.92 -42.32 -24.52
4 128.45 132.42 142.66 153.64 -3.22 -1.60 0.45

total 24,041.97 22,515.98 23,597.93 24,690.93 -897.11 -629.24 -336.66

Table 5.6: DFCL model with stochastic inflation
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Appendix A

Notations on moments and
quantiles

Referring to a random variable (r.v.) X having the suitable regularity properties, the relevant
summary statistics will be denoted as follows.

We shall denote by Et(X) the expectation of X at time t (which is supposed to exist and
to be finite). When the valuation date t is unambiguously identified we shall drop the suffix
t and we also use the simplified notation X := E(X). The variance of X is given by:

Var(X) := E[(X − X)2] ;

the corresponding standard deviations is Std(X) :=
√

Var(X).
For fixed α ∈ (0, 100) the α-th quantile Q(α)(X) of X is defined as the “lower quantile”:

Q(α)(X) := inf {x : P(X ≤ x) ≥ α} .

If the distribution function F (x) := (X ≤ x) is continuous, one has Q(α)(X) = F (−1)(α).
Referring to the α-th quantile Qα := Q(α)(X), the corresponding expected shortfall of X

is the expected value beyond quantile, that is:

S(α)(X) := E
(
X|X ≥ Qα

)
.

109



110



Appendix B

A simple adjustment model for
changes in speed of finalization

Let ni,j be the number of claims finalized in the DY j of AY i and denote by Ai,j the number
of claims of AY i which are still open at the beginning of DY j. One can define the speed of
finalization in DY j for AY i as the ratio:

Fi,j :=
ni,j

Ai,j
;

for fixed j, the speed of finalization Fi,j is the fraction of outstanding claims of DY j paid in
the accounting year i + j − 1. Denoting by Ni the ultimate number of claims of AY i, one
has:

Fi,j :=
ni,j

Ni −
∑j−1

k=0 ni,k

,

with ni,0 := 0. We shall assume that for each AY i there are J different types of claims, with
cost c(k) (k = 1, 2, . . . , J). These costs are supposed to be constant across CY (i.e. are not
exposed to inflation). The fraction of claims of type k is denoted by:

ϕ
(k)
i :=

N
(k)
i

Ni
,

where N
(k)
i is the ultimate number of type k claims. Of course

∑J
k=1 N

(k)
i = Ni hence∑J

k=1 ϕ
(k)
i = 1. The idea is that claims of type k are typically paid in DY k; moreover claims

of type k +1 are usually more costly than claims of type k. As an example, the average costs
C

∗
j reported in figure 5.5 could be used as a proxy for type k costs (with J = 13). With these

hypotheses an increase (decrease) in the speed of finalization Fi,j corresponds to an increase
of the number of claims of type k > j (k < j) paid in CY i + j − 1, thus causing an apparent
inflationary (deflationary) effect in this year.

We are only interested in the cost of claims paid in the first DY. So we only consider:

Fi,1 :=
ni,1

Ni
, (B.1)

which represents the speed of finalization (of claims of the first DY) in the accounting year
i. As we are referring only to the first DY, changes of Fi,1 can only produce an increased
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number of claims of type 2, 3, . . . , J to be paid in CY i. We assume that any acceleration
of finalization can produce early payment of only type 2 claims. Hence in each CY claims
in the first DY can only have cost at c(1) and c(2) level. Moreover we shall assume that the
fraction of type 1 claims is constant across different AY; that is:

ϕ
(1)
i :=

N
(1)
i

Ni
≡ ϕ′ , i = 1, 2, . . . , n .

Let us denote by n′
i,1 and n′′

i,1 the number of claims of type 1 and type 2, respectively, finalized
in CY i, and DY 1. Of course:

ni,1 = n′
i,1 + n′′

i,1 ; (B.2)

moreover:
n′

i,1 = min
{
N

(1)
i , ni,1

}
, (B.3)

since the payment of claims of type 2 is made only after the payment of claims of type 1 is
completed. Expression (B.3) can also be written as:

n′
i,1 = min

{
ϕ′Ni, Fi,1Ni

}
= Ni min

{
ϕ′, Fi,1

}
. (B.4)

The total amount paid in AY i for claims of the first DY is:

ci,1 := n′
i,1 c(1) + n′′

i,1 c(2) = c(1)
(
n′

i,1 + ρ n′′
i,1

)
, (B.5)

where ρ := c(2)/c(1) is the ratio between the cost of type 2 and type 1 claims. If the costs of
figure 5.5 are used one has ρ ≈ 2. By (B.2) and (B.4) equation (B.5) can be written:

ci,1 = c(1)
[
n′

i,1 + ρ (ni,1 − n′
i,1)

]
= c(1) Ni

[
min

{
ϕ′, Fi,1

}
+ ρ

(
ni,1 − min

{
ϕ′, Fi,1

})]
;

hence the average cost per claim is given by:

ci,1 :=
ci,1

ni,1
=

ci,1

Fi,1 Ni
= c(1) min

{
ϕ′, Fi,1

}
+ ρ

(
Fi,1 − min

{
ϕ′, Fi,1

})

Fi,1
.

This expression can be used for deriving the cost escalating factor due to the annual change
in speed of finalization, defined as:

qi,1 :=
ci,1

ci−1,1
, i = 2, 3, . . . , n .

We have:

qi,1 =
min

{
ϕ′, Fi,1

}
+ ρ

(
Fi,1 − min

{
ϕ′, Fi,1

})

min
{
ϕ′, Fi−1

}
+ ρ

(
Fi−1,1 − min

{
ϕ′, Fi−1,1

}) Fi−1,1

Fi,1
. (B.6)

The ratios qi,1 can be used for correcting the observed inflation factors fi,1 := Ci,1/Ci−1,1 of
claims paid in the first DY. Computing the inflation rates as fi,1/qi,1 − 1 one should obtain
a kind of “filtering” for the effect of changes in the speed of finalization.

The ratios (B.6) strongly depend on the level of ϕ′, i.e. on the fraction of type 1 claims
assumed to be generated in each AY. For a given time series:

{
Fi,1, i = 1, 2, . . . , n

}
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of speeds of finalization observed in n consecutive CY, the maximum values of the q factor
(hence the maximum effects of changes in F ) will be obtained for levels of ϕ′ close to minimum
observed value:

F ∗ := min
i

{
Fi,1

}
.

For ϕ′ ≥ maxi

{
Fi,1

}
all the correction factors will be equal to 1. For ϕ′ << F ∗ a relevant

fraction of type 2 claims is assumed as being normally paid in each year; so any change in
the speed of finalization will have a reduced effect, producing a fairly constant series of ci,1

and consequently correction factors uniformly close to unit.
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