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a partial risk minimization is exchanged for more return potential. As in the classi-
cal Markowitz (Portfolio Selection, New York, Wiley, 1959) approach, an efficient 
frontier at the given horizon provides the optimal tradeoff between risk and return. 
An empirical application to insurance companies shows that such a perspective may 
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efficient frontier, at the chosen level of the firm’s risk appetite.
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1 Introduction

Notwithstanding the strong innovation wave which is hitting the insurance industry, 
a large share of its business model still relies on the good old principle of selling 
guarantees through a maturity matching between assets and liabilities. This match-
ing and the general approach known as integrated management of assets and liabili-
ties (ALM) has essentially the aim to cope with the interest rate risk, i.e. the risk 
of an asymmetric impact of interest rate movements (and risk factors in general) 
to the asset and the liability side of the balance sheet. As an alternative to the basic 
cash flow matching solution, the duration concept, as suggested by Redington [24], 
provided a feasible, more sophisticated, but more vulnerable solution. In his semi-
nal work, he introduced the term of immunization to indicate a balance sheet not 
exposed to interest rate movements. “Hedging” would be the modern equivalent. 
The essential aspect is the link between duration D (or average of cash flow times) 
and the price sensitivity to interest rates:

so that the change in portfolio value due to a change in interest rates is proportional 
to portfolio duration. In a balance sheet set up, the risk capital is E = A − L and we 
obtain, using the duration formula:

where the interest rate sensitivity of risk capital is a function of four components: 
durations of asset and liability, leverage A∕L and liability level L.

If E > 0 we have the formula for the equity duration:

where DE can be regarded as the duration of liability plus the product of leverage 
A∕E and mismatch.1 If E ≡ 0 ( A = L . or zero equity portfolio), we obtain DA = DL 
and this perfect matching represents the fundamental immunization formula. How-
ever, the duration is a reliable measure of risk only in case of special interest rate 
changes (small, additive shift of the term structure): as shown by Fong and Vasicek 
[11], arbitrary movements of rates have an impact which depends not only on the 
average of cash flow times ( D ), but also on their dispersion ( M2.). In this broader 
sense, immunization as a minimum (zero) risk approach must be considered only 

D = −
1

P

�P

�r

�E

�r
=
(
−
1

L

�L

�r

)
L −

(
−
1

A

�A

�r

)
A =

(
DL − DA

A

L

)
L

DE = DL +
A

E
⋅
(
DA − DL

)
⋛ 0

1 See Messmore [20] who shows that if E > 0 (the present value of assets greater than the present value 
of liabilities) the immunization of E , i.e. DE = 0 , implies DA < DL . In the following we assume a fixed 
income portfolio with A = L.
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as a special, one-dimensional case of the portfolio optimization problem, where, 
as in the classical Markowitz model [18], an entire risk-return frontier provides a 
complete menu of management decisions, according to the firm’s propensity to risk 
(risk appetite) and financial market opportunities. Fong and Vasicek [9, 10] intro-
duced this double, risk-return dimension into the immunization literature. General-
izing their approach, we shall provide an implementable model according to which 
an insurance company could estimate the efficient frontier facing its fixed income 
balance sheet and evaluate, against arbitrary interest rate movements, how distant 
its portfolio is from efficiency and how much risk it is bearing with the chosen 
asset–liability mix.

In the next paragraph we shall review a few basic results of the classical theory 
of immunization, particularly useful for our developments. Then we will see in prac-
tice the term structure movements as suggested by recent European stress tests and 
financial market dynamics. In paragraphs 4 and 5 we will analyze passive and active 
strategies of portfolio immunization providing, in paragraph 6, an empirical exam-
ple of the model. The final section concludes the paper with a recap of results and 
possible extensions.

2  Some results of the classical theory of immunization2

Let Aj for j = 1,… ,m be the cash flows of a bond portfolio, available at time sj , 
j = 1,… ,m , 0 < s1 < ⋯ < sm . Let P(0, s) be the initial (time 0 ) discount function 
for maturity s.

The current value of the assets is:

where

 and rFW (0, �) is the initial instantaneous forward rate:

A(0) =

m∑
j=1

AjP
(
0, sj

)

P(0, s) = exp

⎛⎜⎜⎝
−

s

∫
0

rFW (0, �)d�

⎞⎟⎟⎠
= exp (−sR(0, s))

rFW (0, �) ≡ −
� lnP(0, �)

��

2 See Appendix 1 for a proof of the theorems. Without loss of generality we assume continuous com-
pounding.
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and R(0, s) is the initial spot rate for maturity s:

Let L̄ be the value of a single liability at the target time H , such that3:

Note that L̄ ≡ A0(H) is the forward, time H value of the portfolio calculated at 
time 0:

If forward interest rates do not change, the value of the bond portfolio at the tar-
get date is A(H) = L̄ . If, instead, interest rates do change we could have A(H) ⋚ L̄.

In fact:

The balance sheet is said to be immunized against interest rate movements if 
A(H) ≥ L̄ and it would be interesting to find the conditions (if any) under which a 
given balance sheet has this property. Clearly, the immunizing conditions depend on 
the assets and liabilities as well as the type of movements assumed for the interest 
rates.

Theorem 1 (constant shift) If the term structure of interest rates undergoes an 
additive and small constant shift from rFW (0, �). to rFW

(
0+, �

)
= rFW (0, �) + Δ0 then 

the balance sheet with liability L̄ at time H (or the portfolio at the target horizon H) 
is immunized if the duration D(A) of the portfolio is equal to H.
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3 This multiple asset—single liability case is equivalent to the case of an asset only bond portfolio with 

target horizon H and target value L̄ = A(0) exp

(
H∫
0

rFW (0, 𝜏)d𝜏

)
.
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This result is known as Fisher and Weil [8] theorem. In simple words, the dura-
tion condition guarantees that, after the assumed constant shift, the gain (loss) 
obtained through the reinvestment effect of short term cash flows is not smaller (not 
greater) than the loss (gain) obtained via the price effect of the long term asset com-
ponent of the portfolio. The special case of a flat term structure applied to the bal-
ance sheet of the life business of an insurance company (with multiple liability cash 
flows) had already been obtained by Redington [24], who introduced also the term 
immunization “to signify the investment of the assets in such a way that the existing 
business is immune to a general change in the rate of interest”  (ivi, p. 289). Samu-
elson [25] provided a similar proof with application to the US banking system. Red-
ington’s “mean term” and Samuelson’s “average time period” can be acknowledged 
as the Macaulay [17] duration.4 Note that the duration condition must be maintained 
over time, so that immunization is in fact a dynamic process.

In terms of rate of returns with continuous compounding, eHR̄0(H) ≡ L̄

L(0)
≡ A0(H)

A(0)
 

so that R̄0 is the ex-ante target rate of return evaluated at time 0, also obtained ex-
post in case of stable interest rates. Taking logs and differentiating:

and, under the Fisher–Weil hypotheses, ΔR̄0 ≥ 0 for any small, additive shift of the 
term structure.

The Fisher–Weil theorem has been generalized in terms of a non-constant shift 
[11, 22, 27, 29].

Theorem 2 (non‑constant shift) If the term structure of interest rates undergoes 
an additive and non-constant shift from rFW (0, �) to rFW

(
0+, �

)
= rFW (0, �) + Δ0(�) 

then the balance sheet with liability L̄ at time H (or the portfolio at the target hori-
zon H) is immunized if the duration D(A) of the portfolio is equal to H (duration 
matching condition) and Δ2

0
(�) ≥ Δ

�

0
(�) for every � (“convexity condition”).

Note that Δ0(�) is the term structure of the change in the forward rates rFW (0, �) 
so that Δ�

0
(�) is the slope of this change and the convexity condition is satisfied if 

Δ0(�) is monotone decreasing (the longer the maturity, the smaller the changes). 
More complex cases are given in Appendix 2. In general, if the term structure shift 
is not convex, the change in the forward value will be negative. The total effect is 
the sum of a “shift in level” component or convexity effect, always positive, Δ2 , and 
a “slope of shift” component Δ� , or risk effect, of ambiguous sign. Under the tradi-
tional approach of a constant, parallel shift of the term structure ( Δ = const, Δ�

= 0 ) 

HR̄0(H) ≡ ln
(
A0(H)

)
− ln (A(0))

ΔR̄0 =
1

H

ΔA0(H)

A0(H)

4 The duration measure was independently obtained by Hicks [13] with the name of “average period”. 
Earlier developments could be seen in Lidstone [16].
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the total effect is due to convexity only and it is always positive, so that a high con-
vexity portfolio would gain an extra-return.5

A Corollary of Theorem 2 gives a useful approximation.

Corollary of Theorem 2 The following second-order approximation holds:

where M2
0
(D) is a variability measure of portfolio cash-flow times measured at time 

0:

A lower bound for the change in value was obtained by Fong and Vasicek [11].

Theorem  3 (lower bound for non‑constant shift) If the term structure of 
interest rates undergoes an additive and non-constant shift from rFW (0, �) to 
rFW

(
0+, �

)
= rFW (0, �) + Δ0(�) and if the duration D(A) of the portfolio is equal to 

the maturity H of the liability L̄ (duration matching condition), then a lower bound 
for the change in value of the portfolio is:

where K0 is the maximum of Δ�

0
(�) and M2

0
(D) is the time 0 variability of portfolio 

cash-flow times.
Note that M2 is a proper variance of times, given that D is the time average (dura-

tion). This impliesM2 = C − D2 where C is the asset convexity (average of times 
squared).6

The extension to multiple liabilities was firstly considered in Redington’s seminal 
paper. He expressed financial immunization by introducing (sufficient) conditions 
for a fixed income portfolio backing insurance commitments (spread across many 
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6 As duration is linked to the first derivative of the price with respect to the interest rate, convexity repre-
sents the second derivative. It is easy also to show that M2 = −

�D

�r
.

5 Clearly, interest rate dynamics implying constant shifts are not arbitrage-free. See Boyle [3].
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maturities) to be immunized (i.e. protected) against parallel and small variations of 
a flat term structure. He proved that assets remain above liabilities in value if, sub-
ject to the initial balance constraint, the duration (time average) of asset cash flows 
equals the duration of liabilities and the convexity (time dispersion) of asset cash 
flows is greater than that of liability cash flows.7

3  Some market data

Depending on their asset and liability composition, insurance companies will be dif-
ferently affected by future levels and shapes of interest rates. The duration mismatch 
gives an approximate measure of this exposure: as shown in Fig. 1, country aver-
ages in Europe are widely dispersed, often far away from the perfect matching line.8 
This implies that market movements could impair the firms by different amounts, 
depending also on the different dynamics that will take place in real markets. How-
ever, as we shall see, even well matched countries, like Italy, Great Britain, Belgium, 
Spain and Portugal, are not immunized against general movements in the shape of 
the term structure.

For example, in its 2014 stress test exercises, EIOPA, the European Supervisory 
Authority for Insurance and Pension Funds, paid special attention to a scenario of 
lowering rates, with a long-lasting flattening view of the term structure (so called 
Japanese scenario).9 In Fig.  2 this low yield scenario is depicted along with the 

Fig. 1  Duration of assets and liabilities in the EIOPA stress test report

7 This multiple liability immunization has been generalized by Shiu [28].
8 The EIOPA calculation of the liability side in Fig. 1 does not take into account all the contract option-
ality available in different countries so that the country relative positions could be altered.
9 For instance, see the EIOPA official presentation of the 2014 Stress Test in EIOPA [6].
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actual market term structure at the end of 2013 (“Baseline scenario”) and that at the 
end of 2014, which resulted even lower than envisaged before.

One can see that the hypothetical and the actual market movements are far from 
being a small, constant shift of the interest rates: the term structure of the shocks 
{Δ(�), � = 1, 2,… , 30} is both non infinitesimal and not flat across maturities, 
quite far from the typical 100 basis points figure, ranging roughly from + 20 bps to 
− 120 bps. According to the EIOPA 2014 Stress Test Report [7], the results of the 
stress exercise have been evaluated with respect to “the size of duration mismatches 
between assets and liabilities as well as mismatches in internal rate of return of 
assets and liabilities” which are “considered the main drivers for the severity of an 
interest rate stress” .10 However, as it is well known after Redington [24] and the fol-
lowing literature,11 in case of not small and not parallel shocks to the term structure, 
the classical “duration gap” analysis should be generalized to take into account also 
portfolio convexity and its effect on the balance sheet.12

Fig. 2  EIOPA 2014 stress test scenarios for European interest rates

10 See EIOPA [7], section C, “Low Yield Module Description and Results”, paragraph 2, sub-paragraph 
56.
11 See Martellini, Priaulet and Priaulet [19], ch. 6 and the references therein.
12 Apart from EIOPA Stress Tests, convexity effects are still ignored in many empirical applications as 
well as popular textbooks in banking and finance (e.g. Mishkin and Apostolos [21]). Moreover, under 
the Basel III Capital Requirement Regulation (CRR, in force since 1 January 2014), the Standardised 
Approach includes a calculation for the own funds requirement for the general risk on debt instruments 
only based on the duration. See European Banking Authority (EBA), Interactive Single Rulebook, arti-
cle 340 in https ://www.eba.europ a.eu/regul ation -and-polic y/singl e-ruleb ook. A partial justification can 
be found in the relevance of the first order effect (duration) as documented in Schaefer [26] and in the 
empirical literature on Principal Components (Martellini, Priaulet and Priaulet [19], ch. 3) where the first 
factor (the parallel shift of the term structure) accounts for 50% to 90% of total variability of interest rate 
changes, especially in the long side of the yield curve.

https://www.eba.europa.eu/regulation-and-policy/single-rulebook
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4  M2 and the passive strategy of minimizing risk

Following Fong and Vasicek [9, 11], let R̄0 be the guaranteed target return, fixed ex 
ante at time 0, for the investment horizon (holding period) H . If the portfolio dura-
tion D is equal to H , the Fong–Vasicek lower bound (Theorem 3 above) shows that 
the ex post portfolio value has a minimum percentage change (maximum shortfall):

where M2
0
 is a variance of times to payment and max

{
Δ�

0

}
 is the maximum change 

of the slope of the current term structure across its maturities. By definition:

where D is the duration and the weights wj are given by the present values of the 
cash flows at time sj . As duration represents a time average, M2

0
 is a time variance 

and can be expressed in terms of duration and convexity. Note that, according to the 
Fong and Vasicek lower bound, M2

0
 is a risk measure in that it captures the exposure 

to any arbitrary movement of the discount curve. It suffices, therefore, to minimize 
M2

0
 in order to minimize such exposure, maximizing, at the same time, the lower 

bound for changes in the forward value of the portfolio. If the absolute minimum of 
M2

0
= 0 is attainable (using zero-coupon bonds of maturity H ), then ΔA0(H)

A0(H)
≥ 0 and 

the forward portfolio value cannot undergo capital losses. This prudential strategy of 
minimizing M2

0
 might be regarded as a “passive” management, in the sense that it 

collapses into a simple one-dimensional recipe: buy the minimum risk portfolio and 
stick to it.

An example could be useful: let us consider the case of two portfolios, the “bullet” 
and the “barbell”. A perfect “bullet” portfol with maturity D has a minimum M2

0
 of 

zero. In practice, it is composed by low-coupon securities with maturities close to D 
so that M2

0
 is close to zero. Viceversa, a “barbell” portfolio is a set of very short and 

very long securities with large M2
0
 even if it has the same duration D . These two port-

folios with equal duration D are differently affected by a positive twist of interest rates 
(“steepening”), i.e. a decrease in short rates and an increase in long rates. In fact, this 
twist has effects both in terms of “reinvested income” and “capital gain” because short 
term rates have become lower, producing lower coupon (higher cost prices) from rein-
vested income whilst long term rates are now higher, producing higher capital losses 
realized at the horizon. This will produce a shortfall of the portfolio value with respect 
to the target value (a negative twist will produce the opposite). But the two portfolios 
are differently (negatively) affected: the barbell portfolio (with higher M2

0
 ) is penalized 

ΔA0(H)

A0(H)
≥ −

1

2
M2

0
⏟⏟⏟
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max
�

{
Δ

�

0
(�)

}
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
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M2
0
=

m∑
j=1

(
sj − D

)2
⋅ wj
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twice, because, due to the barbell profile, i) a greater number of securities/cash flows 
reach sooner the maturity date with reinvestment at lower interest rates (due to the 
downward shock on short interest rates) and ii) a higher and longer portion of the port-
folio will be outstanding after the horizon date, producing a higher capital loss, given 
that securities with longer maturities will depreciate more heavily. This means that both 
M2

0
 and the risk of the barbell portfolio are greater than those of the bullet.

5  Active strategy: the risk‑return tradeoff optimization

Immunization, as a minimum (zero) risk approach, must be considered as a special case 
in the broader area of portfolio optimization, in which risk-return considerations pro-
vide an entire menu of management decisions, depending on the firm’s risk aversion 
and financial market opportunities. In the following, starting from Fong and Vasicek [9, 
10], we provide this generalized risk-return approach for duration matching, insurance 
portfolios, analogous to Markowitz’s mean–variance asset portfolio analysis.

Let R̄0(H) be the current annual ex-ante rate of return over the horizon H . By 
definition:

In case of no shift of the term structure, the ex-ante is also the ex-post rate of return.
Using the Corollary of Theorem 2, after an instantaneous non-constant shift of the 

term structure we have the second-order approximation:

where:

is a special function of the term structure shift from time 0 to time 0+ . and maturity 
H (see Appendix 2). Note that this function is the sum of a “shift in level” compo-
nent (“convexity effect”), always positive, Δ2 , and a “slope of shift” component Δ� , 
(“risk effect”) of ambiguous sign. In case of adverse shift ( Δ2

0
< Δ

�

0
 , ΔS0 < 0)he 

realized return will be under the target value.
The portfolio risk can be measured by the volatility (standard deviation) of ΔR̄0(H) 

and it is proportional to the dispersion measure M2
0
 . As explained by Fong and Vasicek 

[10, p. 235]: “A portfolio with half the value of M2 than another portfolio can be 
expected to produce half the dispersion of realized returns around the target value 
when submitted to a variety of interest rate scenarios than the other portfolio” .

Summing up all the shape changes between 0 . and H − 1 . we have:

eHR̄0(H) ≡ A0(H)

A(0)

ΔR̄0(H) =
1

H

ΔA0(H)

A0(H)
≃

1

H
M2

0
(H)ΔS0(H)

ΔS0(H) ≡ 1

2

[
Δ2

0
(H) − Δ

�

0
(H)

]
⋛ 0
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where the difference, RH − R̄0 , between the future annual rate 1
H
ln
(

AH (H)

A(0)

)
 and cur-

rent ex-ante rate is a random variable (sum of H random variables ΔSt(H) ), with 
mean and variance given by:

In practice, in all financial markets, cash flows can be typically bought and sold only 
in pre-defined “bundles” (the coupon bonds) so that optimal management must be 
set in terms of available bond portfolios. Given a set of K different bonds, the port-
folio return can be represented as a linear combination of K random variables:

with mean �iH and covariance

Clearly:

and we link the dynamics of M2
it
 and ΔSt to their current values M2

i0
 and ΔS0 as fol-

lows (see [10]):

where, if D0i is the i-th bond duration, we have13:

RH(H) − R̄0(H) =

H−1∑
t=0

ΔRt(H) ≃
1

H

H−1∑
t=0

M2
t
(H)ΔSt(H)

𝜇H ≡ E(RH − R̄0), 𝜎
2
H
≡ Var

(
RH − R̄0

)
.

K∑
i=1

wi(RiH − R̄i0)

𝜎ij = Cov(RiH − R̄i0,RjH − R̄j0)

RiH − R̄i0 =
1

H

H−1∑
t=0

M2
it
(H)ΔSt(H) i = 1,… ,K

M2
it
(H)ΔSt(H) ≅ M2

i0
(H)

(
H − t

H

)3

ΔS0(Di0)

(
H − t

Di0

)

M2
i0
(H) =

m∑
j=1

(sj − H)2w0j = M2
0

(
Di0

)
+ (Di0 − H)2

13 Note that using (realistically) bonds instead of cash flows has no effect on the calculation of duration 
but it affects the calculation of risk. In fact, the duration of a portfolio of bonds is simply the “portfolio” 
(average) of bond durations; however, the M2 of a portfolio of bonds is the “portfolio” of M2 (within vari-
ance) plus the variance of durations (between variance). See the Appendix 4.
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so that14:

The active strategy is to find the portfolio wi maximizing the objective function 
U , in mean and variance:

where � is the vector of expected returns �iH and � ≡ [
�ij

]
 is the covariance matrix.

As an example: U(w�

�,w�
�w;�) = w

�

� − �
√
w��w

where the confidence level parameter � (implying the maximization of the lower 
bound of the return confidence interval) has the same role of the risk aversion 
parameter in Markowitz risk-return approach: the higher the parameter, the more rel-
evant the effect of portfolio variance and the more conservative the preferred portfo-
lio will be. For � = 0 the optimal portfolio will maximize the ex ante rate of return; 
for � large, the optimal portfolio is the passive portfolio with minimum immunizing 
risk. As in the classical Markowitz approach, the solution procedure can be divided 
in steps, the first one being the minimum variance portfolio for a given ex ante dif-
ferential return m and the given horizon H:

𝜇iH = E(RiH − R̄i0) =
1

H

H−1∑
t=0

M2
it
(H)E

(
ΔSt(H)

)
=

1

H
M2

i0
(H)E

(
ΔS0

(
Di0

)) 1

Di0

H−1∑
t=0

(H − t)4

H3
,

𝜎ij =Cov(RiH − R̄i0,RjH − R̄j0) = Cov

(
1

H

H−1∑
t=0

M2
it
(H)ΔSt(H),

1

H

H−1∑
v=0

M2
jv
(H)ΔSv(H)

)

=
1

H2
M2

i0
(H)M2

j0
(H)

(
H−1∑
t=0

(H − t)4

H3

)2

1

Di0

1

Dj0

Cov
(
ΔS0

(
Di0

)
,ΔS0

(
Dj0

))

max
wi

U(w
�

�,w�
�w)

⎧⎪⎨⎪⎩

∑
1≤i≤K

wi ⋅ Di0 = H (target duration constraint)

∑
1≤i≤K

wi = 1 (budget constraint)

wi ≥ 0 (no short selling)

14 Note that Fong and Vasicek [10] assume, in the variance calculation, the asymptotic approximation: ∑H

t=0
M4

t
=

M4
0

H6

∑H

t=0
(H − t)6 =

M4
0

H6

H(H+1)(2H+1)(3H4+6H3−3H+1)

42
→

forH→ ∞

H

7
M4

0

 so that the variance is proportional to M
4
0

7H
 . We do not use this asymptotic approximation.
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By varying m, the efficient frontier m(�) can be traced, for a given H . More gen-
erally, assuming the horizon H . as an additional control variable, an efficient surface 
m(�,H) could be obtained, showing the portfolio possibilities for an “active” man-
agement strategy in terms of optimal return-risk-horizon tradeoff.

6  An empirical application

We provide an empirical application using a sample of Italian data. In Italy, at the 
end of 2014, 56 life insurance companies totalled 429 billion euros of segregated 
funds representing with-profit, participating policies,15 mainly invested (218 billion 
euros) in fixed coupon bonds.

In a sample of 10 medium-large life insurance companies (covering a market 
share of 54% in terms of collected premiums) the duration gap is particularly small, 
as required. In 5 cases the duration was about 7.5 years and in the other 5 cases it 
was about 10 years. For simplicity, the Government bond market was reduced into 
four bond benchmarks with maturity 3, 5, 10 and 20 years respectively (see Appen-
dix 3), so that the results cannot measure the “selection” effect of asset management. 
The following frontiers (Fig.  3) have been obtained by calculating, as explained 
in the previous paragraph, the efficient frontiers with horizon (average duration) 
H = 7.5 and H = 10 respectively. The gap between each firm and the frontier is a 
measure of the “allocation” inefficiency of the firm’s portfolio.

A firm finding its portfolio appreciably distant from the efficiency curve could 
reduce the level of risk without penalty in the expected return dimension or, vice-
versa, reallocate its assets to reach a higher level of expected return while keeping 
up its risk exposure. In the first case, it is plausible that it has to reduce the portfolio 
“barbellness” by increasing the share of bonds with a lower M2 and/or the share of 
zero-coupon bonds of the given maturity H. In the second case, it is probable that 
a few coupon bonds are available in the market with better return perspectives and 

min
wi

√
w��w

⎧
⎪⎪⎨⎪⎪⎩

∑
1≤i≤K

wi �iH = m

∑
1≤i≤K

wi ⋅ Di0 = H (target duration constraint)

∑
1≤i≤K

wi = 1 (budget constraint)

wi ≥ 0 (no short selling)

15 Because of the profit participation mechanism, the liability cash-flows partly depend on the asset 
cash-flows, through the returns realized by the assets in the segregated funds. Usually, this effect is neg-
ligible.
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better (de-) correlation for given term structure movements. The reallocation in favor 
of these bonds would improve the portfolio expected return without increasing its 
risk.

7  Conclusions and further developments

Following the seminal work by Fong and Vasicek [9–11], it is possible to actively 
manage the “immunization risk” of a duration-matching portfolio, i.e. a portfolio 
which, notwithstanding the equality of asset and liability durations (immunized 
portfolio), has a risky return, being exposed to the effects of arbitrary shifts of the 
term structure of interest rates. This risk is proportional to a measure ( M2 ) of the 
dispersion of the cash flow dates around the duration average so that, in this risk-
return framework, you can build a generalized optimal management of the com-
pany’s bond portfolio essentially in the same way as asset managers choose the 
optimal asset portfolio along Markowitz’s efficient frontier. The empirical appli-
cation of the model shows that it can disclose how distant the actual portfolio is 

Fig. 3  Efficient frontiers for immunized portfolios at different horizons
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from the efficient frontier, helping to select, along the frontier, the optimal bond 
portfolio corresponding to the firm’s risk appetite.

Extensions of the analysis are manifold. Theoretically, one can attempt to con-
sider the multiple-liability framework in order to be more consistent in the mod-
eling of the life insurance business. Moreover, the shocks to the forward rates can 
be assumed to have an explicit stochastic dynamics, to be exploited in the calcu-
lation of moments. At the same time, the empirical implementation could take 
into account the complete set of bonds available in the financial market, in order 
to have more refined measures of risks, returns and the frontier. The calculation 
of a three-dimensional frontier (risk, return and horizon) could be implemented 
through this more refined modelling and it could be proved useful in generalizing 
the traditional profit testing activity for new insurance products.
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Appendix 1: Proof of the theorems

Proof of Theorem 1 The current budget constraint expressed at the forward time H 
is:

Let

We have:

m�
j=1

Aj exp

⎛⎜⎜⎜⎝

H

�
sj

rFW (0, 𝜏)d𝜏

⎞⎟⎟⎟⎠
≡

m�
j=1
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G
�
rFW + Δ0

� ≡
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Aj exp

⎛⎜⎜⎜⎝
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�
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�
rFW (0, 𝜏) + Δ0

�
d𝜏

⎞⎟⎟⎟⎠
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�Δ0
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�
H − sj

�
exp

⎛⎜⎜⎜⎝
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sj

�
rFW (0, �) + Δ0

�
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⎞⎟⎟⎟⎠
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0
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m�
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�
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�2
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⎛⎜⎜⎜⎝
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∫
sj

�
rFW (r, 𝜏) + Δ0

�
d𝜏

⎞⎟⎟⎟⎠
> 0
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so that G
(
rFW + Δ0

)
= 0 for Δ0 = 0 and G

(
rFW + Δ0

) ≥ 0 for every Δ0 in a neigh-
bourhood of 0 , if Δ0 = 0 is a (local) minimum i.e. if:

where the derivative is taken at Δ0 = 0. Solving for H and multiplying and dividing 
by P(0,H) , we have the duration condition16:

  □

Proof of  Theorem  2 Using the notation introduced in the proof of Theorem  1, 
define:

so that: f (H) = 1 , f � (s) = −f (s)Δ0(s) , f
��

(s)
[
Δ2

0
(s) − Δ

�

0
(s)

] ≥ 0 (by the “convexity 
condition”)

Then the change in value is:

and by Taylor (exact) formula:

�G

�Δ0 �Δ0=0

=

m�
j=1

Aj

�
H − sj

�
exp

⎛
⎜⎜⎜⎝

H

∫
sj

rFW (0, �)d�

⎞
⎟⎟⎟⎠
= 0

D(A) =

∑m

j=1
Ajsj exp

�
− ∫ sj

0
rFW (0, �)d�

�

∑m

j=1
Aj exp

�
− ∫ sj

0
rFW (0, �)d�

� = H

f (s) ≡ exp

⎛⎜⎜⎝

H

�
s

Δ0(�)d�
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ΔA0(H) ≡ G
(
rFW + Δ0

)
− G

(
rFW

)
= G

(
rFW + Δ0

)
=

m∑
j=1

aj
(
f
(
sj
)
− 1

)

f
(
sj
)
= f (H) +

(
sj − H

)
f
�

(H) +
1

2

(
sj − H

)2
f
��(
�j
)

16 Note that the second order (convexity) condition is always satisfied in the single liability case.
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so that, substituting:

where the second equality comes from the duration matching hypothesis D = H and 
the inequality from the “convexity condition”.  □

An alternative proof is given by Montrucchio and Peccati [22].

Proof of Corollary of Theorem 2 Using Taylor’s formula around H : 

so that, for H = D:

  □

Proof of Theorem 3 From the first order approximation for f (s) = ex(s) ≥ 1 + x(s) 
we have:

By the integral formula:

so that, integrating and using the Fubini theorem to change the order of integration:

(1)

G
(
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)
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=
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If K0 ≡ max
u

{
Δ

�

0
(u)

}
.,

so that, using the duration matching condition D = H:

   □

Shiu [27] uses an exact Taylor formula for 
H∫
sj

Δ0(�)d� and Nawalkha and Cham-

bers [23] use higher-order approximations for f (s).

Appendix 2: The shift function

The Fong–Vasicek [11] sufficient condition for immunization is a constraint on the 
shift function:

Note that the term “convexity condition” stems from the fact that under this condi-
tion the function:
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is convex ( f �� (s) ≥ 0).
Omitting the subscript, we can check that Δ(�) = const (uniform additive positive or 

negative shift) satisfies the convexity condition. The same holds for any shift for which 
Δ

�

(�) is negative (decreasing term structure of shifts): for example Δ(�) = exp (−a�) 
for a =

√
c ≥ 0 . In general, the convexity condition is an ordinary, nonlinear differen-

tial equation of the Riccati type.
Using the substitution Δ = −u�∕u we obtain:

The special case c(�) = � is well known because one solution is the Airy function 
(Abramowitz and Stegun (eds.) [1], ch. 10, p.446):

where I�(x) is the modified Bessel function of order ν (Abramowitz and Stegun 
(eds.) [1], ch. 9 p. 375).

The integral representation is:

so that:

In the stochastic case, the shift function is the stochastic change in the forward rate 
drFW (t, �) . In the Vasicek term structure model it is given by e−r�dr(t) , i.e. the change 
in the short term rate smoothed by a negative exponential. Using the shift function 
implied by the EIOPA Stress Test (see Fig. 2) we obtain the convexity condition dis-
played in Fig. 4.

Appendix 3: The stochastic approach to immunization

Under the no-arbitrage approach of financial markets, the case of “flat shifts” and the 
immunization property A(H) ≥ L̄ imply a riskless arbitrage and are therefore not com-
patible with equilibrium [3, 15]. In continuous time, under stochastic term structure 
models, the immunization condition means that the value of assets in the next instant 
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��
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must be equal to the value of liabilities, so that, in differential terms: dA(t) = dL(t) and 
immunization is guaranteed if the value of assets and liabilities have the same sensitiv-
ity to the state variables [2]. This has suggested the definition of a generalized or sto-
chastic duration concept [4].

As an example of this stochastic approach to the asset-liability problem, let us con-
sider the case of the extended-Vasicek [31], no arbitrage term structure model [14]:

where the time-dependent drift â(s) is obtained in order to guarantee a perfect fit of 
the theoretical term structure with the current yield curve:

The solution for r(s) is:

and the relative difference between ex post and ex ante portfolio value is:

dr(s) = [â(s) − kr(s)]ds + 𝜎dẐ(s)

â(s) = krFW (t, s) +
𝜕rFW (t, s)

𝜕s
+

𝜎2

2k
(1 − e−2k(s−t))

r(s) = rFW (t, s) +
𝜎2

2
G2(t, s) + 𝜎

s

∫
t

e−k(s−u)dẐ(u)

G(t, s) =
1 − e−k(s−t)

k

Fig. 4  EIOPA shift function Δ(�) and convexity condition
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The variable Xtj
 has an explicit form in this case:

with mean:

and covariance

so that a risk-return approach can be analytically developed.
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Appendix 4: Practical aspects of the computations of some financial 
variables

In this Appendix we give some technical details of the computations involving 
financial variables.

The computation of term structure changes

In the empirical application we use daily data and we calculate, from the 1 year-
forward rates,  rFW(t,τ, τ+1) for τ = 1,…,25 the daily changes:

The analytic, closed form computation of the portfolio cash‑flow dispersion

It is possible to compute in closed-form, i.e. via an analytic formula, the cash-flow 
dispersion of a securities portfolio. Portfolio cash-flow dispersion turns out to be a 
quadratic function of portfolio duration, of its yield-to-maturity and its convexity17:

M2(D) = variance of the asset cash-flow maturities around their duration; y = portfo-
lio yield-to-maturity, D = portfolio duration (average time-to-maturity), CMod. = port-
folio modified convexity.

The variance with respect to horizon H is obtained as:

Yield, duration and convexity aggregation at portfolio level

• The computation of the portfolio aggregate yield-to-maturity

Traditionally one computes the average portfolio yield, weighted by the amount 
invested (w.r.t. either book-value or market value). This estimate represents an 
approximation to the yield-to-maturity as seen from the valuation date. A better 
alternative seems to consist of computing an estimate that takes into account the 
different time distance of cash-flows from the valuation date: one weights each 
yield by the “dollar duration” of its security. One obtains the so called WADD yield 
(Weighted Average Dollar Duration Yield, see Grondin [12]). The Dollar Duration is 
the product of duration and price of a security.

Δt(�) ≡ rFW(t + 1, �, � + 1) − rFW(t , �, � + 1)

Δ�
t
(�) ≡ Δt(� + 1) − Δt(�)

ΔSt(�) ≡ 1∕2[Δ2
t
(�) − Δ�

t
(�)]

M2(D) = CMod ⋅ (1 + y)2 − D ⋅ (D + 1)

M2(H) = M2(D) + (D − H)2

17 See for example, Smith [30], p. 1670, formula (9) or de La Grandville [5], p. 163, formula (19). With 
continuous compounding, the formula simplifies into M2 = C – D.
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• The computation of average portfolio Duration and Convexity

The (modified) duration was downloaded from Bloomberg, for each security in 
the data set (at the date 31/12/2014). Portfolio duration is the average (weighted by 
market value amounts) of the durations of single securities.

Convexity was also downloaded from Bloomberg, for each security (at the date 
31/12/2014). Bloomberg approximated the second derivative (of price w.r.t. yield) 
as the “central difference” by varying yield-to-maturity by ± 1 basis point, that is18:

Convexity is a “quadratic” measure and hence it can be linearly aggregated (by 
summation): by weighting with the amounts (at market value) one obtains portfolio 
convexity.

• The bond benchmarks for maturity classes

The four bond classes used in the empirical application are represented by the fol-
lowing benchmark bonds:

Bond index Bond ISIN Time-to-matu-
rity (years)

Duration (years) Convexity M-squared

3 IT0004867070 2.84 2.72 10.31 0.21
5 IT0003644769 5.09 4.58 27.08 1.54
10 IT0004513641 10.17 8.27 86.32 9.59
20 IT0003535157 19.60 13.46 241.60 46.84

• M-squared for a portfolio of bonds

Let BT = B1 + B2 a portfolio of 2 bonds with cash flows c11, c12 and c21, c22 
respectively at times t11, t12 and t21, t22 respectively.

Using a flat term structure:

CMod ≅
1

P
⋅

P+−P

Δy
−

P−P−

Δy

Δy
=

1

P
⋅
P+ − 2 ⋅ P + P−

(Δy)2

⏟⏟⏟
Δy=0.01%

= 10, 000 ⋅
P+ − 2 ⋅ P + P−

P
.

18 Bloomberg data include in the price P accrued interest (full price = clean price + accrued interest) and 
assume a variation of ± 1 basis point w.r.t. the yield implicit in the price P.
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