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Motivation: Public Policy

Understanding the drivers of the demand for insurance is crucial to
perform ex-ante policy analysis evaluation

In order to evaluate ”structural” reforms of the market, mandatory
discounts, deductibles, restriction of pricing rules an explicit
economic model is needed

A major challenge is identification: given data on contracts and
claims can we identify the parameters of interest?

In this paper we focus on demand ⇒ we keep supply as given ⇒
we are extending our demand framework to an oligolistic market

Our counterfactual exercises are valid to the extent that companies
do not react to the simulated policies
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This paper

Estimate demand for automobile insurance.

Insurees have heterogeneous risk and risk preference.

Select from different insurance companies.

With switching costs.

Context: Italian automobile insurance.
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Sources of market frictions:

1 Asymmetric information:

Only insuree know her risk (θ) and risk preference (a).
Insurance companies only know (θ, a) ∼ F (·|X ,Z ).
(θ, a) function of observed insuree (X ) and car (Z ) covariates.
Adverse selection: better coverages attract risker drivers.
Advantageous selection: better coverages attract risk averse.
Net effect depends on F (·|·, ·).

2 Switching cost:

Reduces effective competition and “locks-in” insurees.
Insurers “respond” by giving “new-consumer” discounts.
Could exacerbate adverse selection.
Crucial policy relevant parameters → IVASS working on
TUOPREVENTIVATORE (website to get auto insurance
quotes)
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Questions

1 What is the welfare loss due to:

1.1 asymmetric information; and
1.2 switching cost?

2 What is the extent of:

2.1 adverse selection; and
2.2 advantageous selection?

3 How much of the observed price dispersion (across regions) is
driven by:

3.1 differences in consumer types across regions; and
3.2 differences in switching costs?

Gaurab Aryal and Marco Cosconati



Literature

Asymmetric information → market failure → welfare loss.

Rothschild and Stiglitz (1976) → severe adverse selection.

Chiappori & Saline (2000): corr(coverage, claim) ≈ 0.

Found no evidence of adverse selection in French data.

Recent papers: at best mixed evidence of adverse selection.

Why? Theory is silent → truly an empirical question.
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Literature
New “data-driven” approach

Heterogenity in risk-preference + corr(θ, a) < 0→ good
drivers buy high coverage → corr(coverage, claim) ≈ 0.

Private information must be multidimensional.

Finkelstein & McGary (2006), Cohen & Einav (2006)

And recently: Aryal, Perrigne & Vuong (2016).
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Literature

Most papers study the demand side, but from only one seller.

Here: representative sample of Italy -oligopoly markets.

How does selection among different insurers affect estimates?

Given our data we can also explore:
1 Do F (·, ·|X ,Z ; market) vary across market?
2 What fraction of dispersion in premium across regions can be

explained by differences in F (·, ·|X ,Z ; market)?

Empirical: virtually none except Cosconati (2016)
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Identifying Preferences for Risk: Issues

Cohen and Einav (AER 2006) → risk aversion is more important
than risk in determining demand for insurance

→ it is important to account for multiple dimensions of private
information

they identify parametrically the joint distribution of risk and risk
aversion using data from one single Israeli company

we extend their analysis in several ways

1 distribution of risk and risk aversion is unrestricted ⇒
robustness: our results will be less dependent on the
assumptions we made

2 differentiated insurance product and multiple companies
3 our framework and data will allow to take into account sorting

into companies
4 we can estimate and identify the true distribution of risk/risk

aversion in the market as opposed to company specific
distribution
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Selection into Companies and Preferences for Risk

Cosconati (2016) → estimates hedonic premium regressions that are
the basis of our atheoretical supply

spells out the identification assumptions to estimate
company-specific premium regressions
substantial heterogeneity across companies in the
premium-accident schedule → potential source of sorting
company dummies are significant in the accident probability →
reduced form evidence of self-selection

companies differ in terms of the clauses offered → product
differentiation can generate selection on risk

these empirical results/arguments suggest that focusing on one
company can be misleading to infer preferences for risk
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In this paper

The necessary first step is to understand the demand well.

We take the supply side as given: atheoretical supply.

Model the demand with rich consumer unobserved
heterogeneity and switching cost.

Identification: semiparametric identification.

To do:
1 Estimate the model primitives using data from Italy.
2 Estimation: closer to discrete choice model with multi-product

oligopoly with asymmetric information.
3 Counterfactuals.
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In this paper

1 Exogenous coverage characteristics.

Model: Oligopoly+multidimensional private information+
switching cost is a hard problem to solve.
Identification: usual “BLP instruments” are infeasible because
of endogenous product characteristics.

2 Static decision.

3 No moral Hazard.
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Introduction to IPER
New Large Adimistrative Data on the Auto Insurance Market

IPER consists of

insurance histories of a core sample of drivers who subscribed
one or more contracts in 2013 → the unit of observation is the
SSN
the histories contain info on multiple contracts, new vehicles
and the evolution of each contract underwitten by a driver of a
core sample ⇒ akin to the PSID/NLSY
only info on privately owned cars → no trucks, motorcycles,
fleet vehicles
BIG data → in previous work much smaller sample size → a
major problem when dealing with rare events
IPER is representative of the market → info on contracts
underwritten by nearly 50 companies operating in the Italian
market
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IPER

IPER contains info on:

the driver: age, province of residence, gender
the vehicle: cc, horse power, year of registry
clauses: 5 clauses
the actual premium paid: different than the tariff
claims: number of claims and their size at fault for each
contractual

these info allow to estimate hedonic price regressions and
competition in local markets (provinces/regions)

IPER allows to analyze premiums as an equilibrium object ⇒
typically only data from one/two companies are available

Gaurab Aryal and Marco Cosconati



Features

Attrition rate 9.4% (4.8%) for contracts expiring 2014 and
2015, respectively.

735, 506 contracts observed for each of the three years
2013-2016.

22% subscribe basic coverage for more than one vehicle,
majority of those have 2 vehicles.

13, 071 contracts in 2014 and not renewed in 2015.

More than 30% with multiple contracts purchase coverage
from multiple companies → we rationalize this by different
loadings on Z across companies
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Data on Claims

Companies provide information on past: number of accidents
at fault filed during the past five years.

Supplement: “Banca Data Sinistri” (BDS): the universe of
claims filed in the market.

Match BDS with IPER using SSN-plate number.

Data: first three accidents (in chronological order) filed within
a contractual year.

Accident date, Claim filing date, Damage size.
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Institutional Aspect
General Description

Italy: basic auto insurance (rc auto) and a motor third party liability
is mandatory.

Covers damage to third parties’s health and property damage if the
driver is not at fault

Upper limit for liability: 1 million Euros for property damage and 5
millions for health.

Owner of the car is typically the subscriber of the insurance contract

Each accidents has a percentage of fault (pc) ranging from 1 to 100
percentage points.
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Market Structure

IPER: 45, 47 and 45 companies in the 1st, 2nd, 3rd.

Market share: 1st (29.94%); 2nd (11.65%) and 3rd (11.05%).

The largest 10 have 90% market share.

Switching: 13.7% and 13.5% in the 2 years.
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Model
Basic

Insurees:
1 car and insuree characteristics: (X ,Z ) ∼ FX ,Z (·).
2 unobserved heterogeneity: (θ, a) ∼ F (θ, a|X ,Z ).
3 Pr(at least one accident) = θ
4 CARA utility: v(w ; a) = − exp(−aw).
5 Random damage: D ∼ H(·|Z ) over [0,D].

Options: J = {1, 2, . . . , J} set of all options.

Insurance contract:
1 Premium-clauses pair {Pj , ξj}.
2 Random indemnity: → E ∼ Ψ(·|ξj).
3 All accidents in a year are “aggregated” into one.

We consider demand without switching cost first.
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Model
Preferences

Ũij = (1− θi )v(Wi − Pij ; ai ) no-accident

+θiλj

∫ D

0

v(Wi − Pij − D; ai )dH(D|Z) at-fault

+θi (1− λj)

∫ D

0

∫ D

0

v(Wi − Pij − D + E ; ai )dΨ(E |ξj)dH(D|Z)

not-at-fault

CRRA → Ũij = − exp(−ai (Wi − Pj))

[
1− θi + θi

(
λjEH

(
exp(aiD)|Z

)
+(1− λj)EΨ,H

(
exp(−ai (E − D))|X ,Z ; ξj

))]

∴ Ũij ≡ exp(−ai (Wi − Pj))

[
1− θi + θiΓ(ai ;λ,H,Ψ, ξj)

]
.

Gaurab Aryal and Marco Cosconati



Model

Premium enters non-linearly and wealth is unobserved.

But with CARA, work with the certainty equivalence of each j .

The certainty equivalence of the contract (Pj , ξj) is

− exp(−aiCE (Pj , ξj)) = Ũij

Solving for CE we get

CE(Pj , ξj ; θi , ai ) = −Pj −
1

ai
ln

[
1 + θi

(
Γ(ai ;λ,H,Ψ, ξj)− 1

)]
︸ ︷︷ ︸

=Uij

≡ −Uij − Pj .

One dimensional insuree type: Uij ∼ FU (·|X ,Z , ξ)

U → one-dimensional sufficient statistic.
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Model
Random Utility Theory

Let the preferences be represented in terms of CE as

uij = CEij + εij = −Uij − Pij + εij , εij ∼ T1EV (1)

Then, an insuree i chooses solves

j = arg max
j̃∈J

ui j̃ .

Thus the probability that consumers i chooses policy j is

Sij =
exp(−Uij − Pj)∑J

j ′=0 exp(−Uij ′ − Pj)
.

Unconditional probability of an insuree choosing j is given by
a mixture

Sj(P,X ,Z ) =

∫ u

u
Sij(P,U)dFU (U|X ,Z ). (2)
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Identification

Data: premium, history, claims, indemnity,

at-fault and (X ,Z )

Parameters: F (θ, a|X ,Z ) and H(·|Z ).

Let Dij be both a random variable or a vector thereof if
insuree i had multiple accidents because damages are i.i.d.
across insures and damages.
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Identification
Heuristics

1 Identify U ∼ fU by inverting the (model) share of j :

sj =

∫
U
k(p)︸︷︷︸
known

fU (u|x , z)︸ ︷︷ ︸
unknown

du

2 Identify θ ∼ fθ(·|x , z) using Logit assumption + # accident.

3 Use fU (u|x , z) and fθ(·|x , z) to identify fθ,a(·, ·|x , z).

4 Identify λ using Logit assumption + “at-fault” data.

5 Still figuring out how to identify H(·|Z ) and the distribution
of indemnity (D − E )
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Identification
Identification of FU (·|X ,Z)

Fix (Fθ,a(·|·),H(·|Z ),Ψ(·; ξ), λ).

Normalize utility from outside option to Ũ0 = Ui0 − P0, and
take ratio of the probabilities:

S̃ij :=
Sij
Si0

= exp(−Uij − Pj − Ũ0).

Integrating this over the entire population gives

S̃j(P,X ,Z) =

∫ u

u

S̃ij(P,U)dFU (Uij |X ,Z)

=

∫ u

u

exp(−(Pj + Ũ0)− Uij)dFU (Uij |X ,Z)

=

∫ u

u

exp(−P̃j − Uij)dFU (Uij |X ,Z).
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Identification
Identification of FU (·|X ,Z)

Convolution theorem → Laplace transform of S̃ is the product
of the Laplace transform of exp(−P̃j − Uij) and fU (·|·).

Using L to denote the Laplace transform (suppress (X ,Z )):

LS̃(u) = Lexp(u)× LfU (u)⇒ LfU (u) =
LS̃(u)

Lexp(u)
.

Now, invert the Laplace to get

fU (u) =
1

2πi
lim
T→0

∫ iT

−iT
exp(ξu)

LS̃(ξ)

Lexp(ξ)
dξ.
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Identification
Identification of Fθ,a(·, ·|X ,Z)

There is a one to one mapping between (θ, a) and (U , a)(
U
a

)
7−→

(
g1(U , a) = θ
g2(U , a) = a

)
; g1(U , a) =

exp(aU)− 1

Γ(ai ;λ,H,Ψ, ξ)− 1
.

Let J is the Jacobian of g1(U , a). Then

fU,a(U(θ, a), a)× |J| = fθ,a(θ, a|X ,Z)

= fa|θ(a|θ,X ,Z)× fθ(θ|X ,Z)

Hence it is enough to identify the marginal density fθ(θ|X ,Z ).
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Identification
Identification of fθ(θ|X ,Z)

We exploit multiple accidents for identification.

We model the risk be a Zero-inflated Binomial process.

Let Ai ∈ {0, 1, 2, 3}: #accidents met by insuree i with pmf

Ai ∼
{

0, with probability (1− θi ),
B(ni , πi ), with probability θi

; ∀i , ni ≤ 3.

Thus

Pr(Ai = 0) = (1− θi ) + θi (1− πi )
ni ;

Pr(Ai = `) = θi

(
ni
`

)
πni
i (1− πi )

ni−`, ` = 1, 2, ni = 3.
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Identification
Identification of fθ(θ|X ,Z)

Furthermore, let θi and πi be generalized linear models:

logit(1− πi ) = Z̃iβ and
logit(1− θi ) = X̃iτ .

Z̃ ⊂ Z car and market characteristics that affects the number
of accidents and X̃ ⊂ X is the insuree characteristics (e.g.,
BM-class) that affect whether an insuree has an accident or
not.

Maximize log-likelihood:

log L =
N∑
i=1

{
1(Ai = 0) log[eX̃iτ + (1 + e Z̃iβ)−ni ]− log(1 + eX̃iτ )

+(1− 1(Ai = 0))× [ai Z̃iβ − ni log(1 + e Z̃iβ) + log

(
ni
ai

)
]

}
.
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Identification
Identification of fθ(θ|X ,Z)

Define a (latent) indicator variable ωi ∈ {0, 1} such that
ωi = 1 when Ai is from the zero state and ωi = 0 when it is
from the Binomial state.

If we could observe ωi then the log-likelihood can be
simplified to be

log L = log
∏
i

Pr(Ai = ai , ωi ) =
N∑
i=1

[
ωi X̃iτ − log(1 + eX̃iτ )

]

+
N∑
i=1

(1− ωi )

[
ai Z̃iβ − ni log(1 + e Z̃iβ) + log

(
ni
ai

)]
.

Since ωi is unknown, we can use Nested-Fixed Point
algogrithm (or EM algorithm) to estimate conditional mean of
ωi given (β, τ).
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Identification
Identification of λ

Fix (H(·|Z ),Ψ(·; ξ))

Suppose we observe the universe of all accidents that were
claimed.

Let there be M total accidents in the data with third party
damages, and hence 2M many observations.

For every accident we can assign an at-fault indicator
Yi ∈ {0, 1} to each (involved) insuree.
Then, Pr(Y = 1|X ,Z , ξ) = λ = E[Y |X ,Z , ξ]→ the likelihood

2M∏
i=1

Pr(Y = yi |X = xi ,Z = zi , ξ = ξi )

=
2M∏
i=1

Pr(Y = yi |X = xi ,Z = zi , ξi = ξj)

=
2M∏
i=1

p(xi , zi , ξi ;κ)yi (1− p(xi , zi , ξi ;κ))1−yi .
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Identification
Identification of λ

Let log( p
1−p ) = eκ0+κ1X+κ2Z+κ3ξ, so

log L =
2M∑
i=1

yi log p(xi , zi , ξi ;κ) + (1− yi ) log(1− p(xi , zi , ξi ;κ))

=
2M∑
i=1

− log(1 + eκ0+κ1X+κ2Z+κ3ξ) +
2M∑
i=1

yi (κ0 + κ1X + κ2Z + κ3ξ).
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Identification
Identification of Γ(ai ;λ,H,Ψ, ξj)

Since

Γ(ai ;λ,H,Ψ, ξj) = λjEH

(
exp(aiD)|Z

)
+(1− λj)EΨ,H

(
exp(−ai (E − D))|X ,Z ; ξj

)
so identifying the indemnity distribution Ψ(·|ξ) and the damage

distribution H(·|Z ) is sufficient.
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Demand with Switching Cost

Switching cost βi ∼ Fβ(·|X ).

Let k(i , t) denote the insurance company from whom insuree
i bought her coverage in period t, and kj denote the company
that sells contract j .

Moreover when an insuree switches company, she gets a “new
customer” discount δij(k).

Then the random certainty equivalence:

uij = −Uij − Pj − (βi − δij(k))1{kj 6= k(i , t − 1)}+ εijt ,

The probability that insuree i chooses policy j(k) is

Sij =
exp(−Uij − Pj − (βi − δij(k))1{kj 6= k(i , t − 1)})∑J

j ′=0 exp(−Uij ′ − Pj − (βi − δij ′(k))1{kj ′ 6= k(i , t − 1))
.
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Identification
Fβ(·)

Condition on Xi , the discount does not vary across insuree so:

δij(k) = δj(k) + γXi .

So the conditional probability that i chooses j is

Sij =
exp(−Uij − Pj − (βi − δj(k) − γXi )1{kj 6= k(i , t − 1)})∑J

j′=0 exp(−Uij′ − Pj − (βi − δj′(k) − γXi )1{kj′ 6= k(i , t − 1))
.

If (βi − δj(k) − γXi ) > 0→ inertia in the choice of insurance
company.

The conditional choice probability of repeat purchasing
exceeds the marginal choice probability.

Since δij ⊥ βi , variation in the discount + parametric
assumption → identify the switching cost.
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Identification
Switching Cost

Define a new variable Ũij(k) := Uij − βi1{kj 6= k(i , t − 1)}.
Same identification strategy as before identifies the
distribution of U , i.e., FŨ (·|X ,Z ).

Let Fβ(·|X ) = Fβ(·|X ; γβ), finite unknown parameters γβ.

Objective: identify FU (·|X ,Z ) and Fβ(·; γβ) from FŨ (·|X ,Z ).
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Identification
Fβ(·)

We make the function form assumption:

βi = β0 + αXi + σ2(X )νi , ν ⊥ X , νi ∼ N (0, 1),

Using cross-sectional data, we can estimate the discount
insurers offer for new customers, so treat it a known.
Simplifying and using E(β|X ) = β0 + αX we get

Sj (P, X , Z) =
exp(−Uij − Pj − (β0 + αX − δ̂j(k) − γ̂X )1{kj 6= k(i, t − 1)})∑J

j′=0
exp(−Uij′ − Pj − (β0 + αX − δ̂j′(k) − γ̂X )1{kj′ 6= k(i, t − 1))

,

which, up to the parameters (β0, ξ) is same as model without
switching cost.

But we can use the switchers 1{kj 6= k(i , t − 1)}) to identify
β0 and ξ as desired by following these two steps:

1 (1) As before (i.e., without switching cost) identify FU (·|X ,Z );
2 (2) there is a unique (β0, α) that equates shares of j observed

in the data and the share predicted by the model.
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Choice Sets

usually when we estimate demand we know ex-ante the price
of bundles

here we do not: hard to get price of each clause for nearly 50
companies + prices 6= tariff

as in any non-linear pricing problem prices differ across
consumers → the base premium depends on the driving record

we reconstruct the choice set by estimating hedonic premium
functions → predict the set of available policies

estimating precisely hedonic premium function is crucial for
our exercise
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Hedonic Price Regressions

Consider the following hedonic price regression:

pijt = cj + β0X
ind
i,t + β1X

car
i,t + β2,jX

clause
i,t + ηi + εi,t

we have the following clauses

black box

driving clauses

protected bonus

preliminary inspection

repairing clause

decreasing/increasing clauses → controls for omitted clause

coverage: max amount of damage at fault covered
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Hedonic Premium Regressions

we estimate the company-specific premium function by FE

CARA only relative price matter to choose a policy

CARA is consistent with FE estimator → no need to identify
coefficients that are not company-specific as only shift the “base”
premium
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Some Results
Switching

Using the specification in Cosconati(2016) → switching ⇒ premium
cut of about 48 euros (about 10% on the premium)

decrease in the premium is about 7% if the drivers has one accident
on the record

younger switcher enjoy smaller premium cuts

→ switching costs exists
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Non-linear pricing in the market

Cosconati (2016)

1 poor driving record impact premia: driving record indicators
have a different coefficient → non-linear pricing

2 the slope differs across companies → heterogeneity of pricing
strategies

let ∆j(class1) and ∆j(AR1) be the increase in the premium at
company j if the driver goes from rating class 1 to class 2: the
marginal cost of being in bonus-malus class 1
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Sources of Sorting
Premium-Accident Schedule

∆j(class1) vary substantially in the market
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Sources of Sorting
Premium-Accident Schedule

∆j(AR1) vary substantially in the market
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Sources of Sorting and Identifying Variations in the Data

heterogeneity of pricing is likely to generate sorting

no dynamics + MH → price-accident slope shifts risk-type
utility

variations on the supply side → identify the company-specific
risk preferences
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Future Work and Conclusions

preliminary conclusions
1 given our data it is possible to “theoretically”

non-parametrically identify the distribution of preferences for
risk/switching cost

2 enough variability in the data to “practically” identify the
distributions + indirect evidence of switching cost +
self-selection into companies

3 not having access to accidents and damage not at fault is a a
severe limitation we are trying to overcome by making extra
assumptions

4 counterfactual experiments to perform: eliminate switching
cost, introduce mandatory discounts on some clause, introduce
no-fault system

5 → assess impact on accidents and welfare

road ahead
1 extend and incorporate the supply side and endogenize the

coverage options.
2 preliminary work Supply Side
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Model
Insuree’s Choice

For a vector of premium P := (P1, . . . ,PJ) ∪ 0 the probability
that consumers with type (T , α) chooses coverage j is

Sij(U ,P) =
exp(−Pj − Uij)∑J

j ′=0 exp(−Pj ′ + Uij ′)

Unconditional probability of choosing j is a mixture

Sj(P) =

∫ t

t
Sij(U ,P)dFU (U|X ,Z , ξj).
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Model

Insurer k sells Jk coverages with specific load factor:

Ck = (C k
1 , . . . ,C

k
Jk

) ∈ R|Jk |+ .

Define Σjk :=
{

(θ, a) : uijk(θ, a) ≥ uij ′k(θ, a),∀j ′ ∈ Jk
}

.

Risk pool j policy: E(θ|Σjk).

Insurance k solves:

max
{Pj}j∈Jk

{
Eπk =

∑
j∈Jk

Sj(Pk ,P−k)
(
Pj − E(θ|Σjk(Pk ,P−k))C k

j

)}
.

s.t., IC and IR constraints.
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Bunching

θ

a

Σ1k

Σ2k

Σ3k

Σ4k

Figure: Consumer Type Space for four options.
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Model

FOCs at (Pk ,P−k) = (P∗k ,P
∗
−k): for all j ∈ Jk

DjEπk =
∂Sj

∂Pj

(
Pj − E(θ|Σjk)C k

j

)
+ Sj

(
1− ∂E(θ|Σjk)

∂Pj
C k
j

)
+

∑
j′∈Jk ,j′ 6=j

{
∂Sj′k

∂Pj

(
Pj′ − E(θ|Σj′k)C k

j′

)
− Sj′k

∂E(θ|Σj′k)

∂Pj
C k
j′

}
= 0.

We assume that {F (θ, a),H(·),Fα} are such that:
1 For all j ∈ J,Sj is continuously differentiable in premiums.
2 The type distribution FT (·|X ,Z , ξ) is log-concave.

If u(x ; θ) is quasi-concave in x , and if θ ∼ F is log-concave
then

∫
u(x ; θ)dF (θ) is also quasi-concave.

Flinn and Heckman (1983); Caplin and Nalebuff (1991).
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