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1. Introduction

With the enactment of the new Solvency 2 Directive(10), effective starting the
1st of January 2016, a new risk-based solvency standard is introduced in the Eu-
ropean insurance market. Part of the Solvency 2 framework is dedicated to the
definition of a capital requirement necessary to have sufficient available economic
resources to cover both a Minimum Capital Requirement and a Solvency Capital
Requirement.
As emanated by article 101 Solvency Capital Requirement shall correspond to the
Value-at-Risk of the basic own funds of an insurance or reinsurance undertaking
subject to a confidence level of 99.5% over a one-year period.
Particularly, the Solvency Capital Requirement is calculated with a standard for-
mula or, possibly, in specific circumstances and subject to the supervisory author-
ities approval, with partial or full internal models. In the following, we take into
account only the case where Solvency Capital Requirement is calculated by means
of standard formula (hereafter referred to as SCR).
The SCR evaluation follows a modular approach. The global risk which the in-
surance or reinsurance undertaking is exposed to is divided into risk classes (or
modules) each composed of sub-risks (or sub-modules). For each risk class a capi-
tal requirement is determined as the aggregation of its sub-risk capital requirement
(SCR sub-risks). The capital requirements on risk class level are then aggregated
in order to derive the capital requirement for the overall risk. By considering the
nature of risks subscribed by an insurance or reinsurance undertaking, this com-
bining of risks that are not fully dependent involves a diversification effect i.e. the
overall risk capital related to the combination of sub-risks will be equal or lower
than the sum of the capitals for each sub-risk. For more background on the Sol-
vency 2 framework we refer to the official web page of the EIOPA (11). Once the
overall risk capital for Solvency purposes has been defined, the undertaking has
reached the main goal of SII.
Nevertheless, in order to analyze capital absorption and/or the economic risk ad-
justed performance of an insurance portfolio, it is necessary to allocate the diver-
sification effect among each sub-risk and/or sub-portfolio. Diversification forms
the foundation of insurance and is the keystone on which important risk manage-
ment processes rest. To the best of our knowledge Solvency 2 does not provide
any specific methodology for capital allocation. The allocation of the SCR, i.e.
its calculation net of diversification effect, is a needful procedure to know the real
capital absorption of the lines of business and to measure the relative financial
performance. Academic researchers have addressed capital allocation for many
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years proposing several approaches and establishing the principles of coherence
through axiomatic definitions for evaluating allocation methods in relation to the
specific risk measures (see (17) (6) (4)). This line of research has provided signifi-
cant applications relating to various risk measures assuming different distributions
for the underlying risk variable and identifying the Euler’s allocation principle as
the highest performing.
In this paper we focus on the SCR aggregation formula pointing out its main char-
acteristics and underlying assumptions. Then, we derive an original closed for-
mula to calculate the allocated SCR among the risks considered in the multilevel
aggregation scheme established by Solvency II regime, by means of the Euler’s
allocation principle. Finally, we compare the result obtained with our formula
to other allocation principles and we provide an application for the allocation of
overall Basic Solvency Capital Requirement among several Lines of Business.

The paper is organized as follows. In section 2 we introduce the theoretical
framework. In section 3 we point out properties and remarks about the standard
formula provided by EIOPA for SCR calculation. In section 4 we provide an al-
location methodology based on the Euler Principle to allocate the Basic Solvency
Capital Requirement in the standard formula framework and lastly in section 5 we
show a numerical application based on the data of a non-life insurance company,
comparing our allocation approach with other approaches.

2. Theoretical framework

We consider an insurance or reinsurance undertaking whose portfolio Q of
insurance contracts is composed by q-homogeneous sub-portfolios. We define a
set of random variable Γ in the probability space [Ω,ℑ,P]. The profit/loss of the
s-th (s = 1...q) sub-portfolio is modeled by means of the generic random variable
Xs ∈ Γ. The total profit/loss of the company is described with the random variable

X =
q
∑

s=1
Xs.

In order to assess the insurer’s economic capital or the solvency capital re-
quirement for regulatory or internal purposes it is usual to adopt a risk measure
on X , defined as a functional ρ that maps X to a non-negative real number ρ(X),
possibly infinite:

ρ(X) : Γ→ℜ (2.1)
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For an introduction to risk measures, see, for example, Albrecht (1), Denuit
et al. (7), Panjer (15), McNeil et al. (14). The capital requirement for solvency
purpose representing the extra cash that has to be added to expected losses E(X)
to cover the unexpected losses is defined as:

EC : π(X) = ρ(X)−E(X) (2.2)

Several desirable properties for risk measures have been proposed in the literature:
see, for example, Denuit et al. (8).
Once the total economic capital is defined, we are interested in the process of al-
locating EC across the q-sub-portfolios also known as the capital allocation prob-
lem:

π(X) =
q

∑
s=1

π(Xs|X) (2.3)

where, from an economic point of view, π(Xs|X) (s = 1, ...,q) is the risk contri-
bution net of diversification effect of the q-sub-portfolios (5). Note that the risk
variables Xs are usually dependent so there exist a diversification effect implied in
the calculation of the capital requirement π(X) such that:

π(X) =
q

∑
s=1

π(Xs|X)≤
q

∑
s=1

π(Xs) (2.4)

The overall diversification effect is simply measured as:

DE =
q

∑
s=1

π(Xs)−π(X) (2.5)

In the following we summarize certain main risk measure properties as well as
capital allocation principle properties useful for our further investigation.

2.1. Coherent risk measure
The most important risk measure properties were introduced by Artzner (1999)

(2) and (3) who defines the coherence of a risk measure by means of the following
axiom:

Definition 2.1.1. A risk measure π is considered coherent if satisfies the following
property:

• Translation invariance: for a riskless deterministic portfolio L with fixed
return α and for all X ∈ Γ we have π(X +L) = π(X)−α
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• Subadditivity: for all (X1,X2) ∈ Γ we have π(X1 +X2)≤ π(X1)+π(X2)

• Positive Homogeneity: for all λ > 0 and all X ∈ Γ, π(λX) = λπ(X)

• Monotonicity: for all X ,Y ∈ Γ with X ≤ Y , we have π(X)≤ π(Y )

2.2. Coherent allocation of risk capital
Denault (2001) (6) extends the concept of coherence to the allocation principle

establishing a set of definitions and axioms. Considering a set Q = {1,2, . . . ,q}
of all portfolios of the undertaking and a coherent risk measure π, the set A of
risk capital allocation problems is represented by the pairs (Q,π). The following
definition holds:

Definition 2.2.1. An allocation principle is a function Π : A→ℜq that maps each
allocation problem (Q,π) into a unique allocation:

Π : (Q,π) 7→

Π1(Q,π)
...

Πq(Q,π)

=

K1
...

Kq

 (2.6)

such that π(X) =
q
∑

s=1
Ks (Full allocation property)

where, followig the notation introduced by Tasche (17), Ks = π(Xs|X) is the allo-
cated risk measure for the sub-portfolio s− th.

Definition 2.2.2. An allocation principle Π is coherent if, for every allocation
problem, the following three properties are satisfied:

1. No Undercut

∀M ⊆ Q, ∑
s∈M

π(Xs)≤ π(∑
s∈M

Xs)

2. Symmetry: if by joining any subset M ⊆Q i, j, portfolios i and j both make
the same contribution to the risk capital, then π(Xi|X) = π(X j|X).

3. Riskless allocation: for a riskless deterministic portfolio L with fixed return
α we have that

π(L) =−α

5



2.3. Main allocation principle
There are several allocation principle commonly used in practice (see (14)).

They imply different sets of assumptions and their applicability depends upon the
circumstances. Among these, we introduce the Euler, haircut, marginal, covari-
ance and market driven allocation principles.

2.3.1. Euler allocation principle
The Euler allocation principle derives from the well-known Euler’s homoge-

neous function theorem applied to a risk measure. The method states that if the
risk measure to be allocated a first degree homogeneous function, then it is possi-
ble to represent it as follows:

π(X) = π

(
q

∑
s=1

Xs

)
=

q

∑
s=1

π(Xs) ·
∂π(X)

∂π(Xs)
=

q

∑
s=1

π(Xs|X) s ∈ Q (2.7)

In this way, the value of the reference risk measure, is represented as the sum
of additive components, each representing the value of the risk measure for the
variable i-th net of diversification.

Euler Allocation Principle is appealing for its economic meaning: to give more
weight to risk where the overall capital is more sensitive.

2.3.2. Haircut allocation principle
A straightforward way to allocate capital is based on assumption of propor-

tionality between allocated and unallocated capital requirement, as for:

π(Xs|X) = π(X) · π(Xs)

∑
q
s=1 π(Xs)

(2.8)

This allocation principle is very easy to compute but it does not take into
account the correlation among risks so it can only be used where there is no cor-
relation effect.

2.3.3. Marginal allocation principle
This principle allows to allocate capital by considering the stand alone risk

contributions of the several sub-risks to the total risk capital:

π(Xs|X) = π(X) · π(X)−π(X−Xs)

∑
q
i=1 π(X)−π(X−Xi)

(2.9)
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The principle takes into account the correlation effect implicitly. It provides a
numerical approximation for the partial derivative of the risk measure with respect
to one specific risk variables. This gives results that take into account the correla-
tion among risks, but the accuracy is lower than Euler principle. Furthermore, its
calculation requires a number of iterations equal to the number of sub-portfolios
considered.

2.3.4. Covariance allocation principle
This principle, since the variability of total risk capital is fully explained by

the sub-risks, starts from the following variance decomposition formula:

VAR(X) =
q

∑
s=1

COV (Xs,X)

so that

π(Xs|X) = π(X) ·COV (Xs,X)

VAR(X)
(2.10)

2.3.5. Market Driven allocation principle
This principle consists in a simple proportional rule among the allocated cap-

ital and a variable assumed as risk driver:

π(Xs|X) = π(X) · RDs

∑
q
s=1 RDs

(2.11)

where RDs is the s− th risk driver.

2.4. On the coherence of Euler allocation principle
The Euler’s allocation principle described in the previous subsection, is one

of the most popular allocation methods proposed in literature. This is due to its
suitable properties. In this sense, a very important contribution is that of Buch
et G. Dorfleitner (2008) (4). From an axiomatic point of view, they study the
relation between the properties of the Euler’s allocation principle and those of the
risk measure to which the allocation is applied. What they find is summarized in
the following proposition.

Proposition 2.1. The Euler’s allocation principle applied to a coherent risk mea-
sure has the properties of "full allocation", "no undercut" and "riskless allocation"
so it is coherent with the definition given by Denault (2001) (6).
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3. Solvency II standard formula: basic assumptions and general framework

The Solvency II framework is a regulatory project that imposes (re)insurance
undertakings to calculate regulatory solvency capital requirement by means of a
risk based methodology (10). From a practical point of view, undertakings SCR
may be calculated by means of the standard formula, provided by EIOPA, or via
(partial) internal model. Although the latter approach may be better to match the
risk profile of the entity, its adoption must be approved by the supervising author-
ity through a rigorous procedure. Otherwise, the Standard Formula approach may
be considered the benchmark Supervisor’s method and is widely adopted by mar-
ket participants to calculate their SCR or as a comparative measure with a (partial)
internal model.
Due to its strategic relevance for insurance market participants, in the follow-
ing we take into account only the SCR calculated with the standard formula. It
considers that the insurance company must compute the overall risk exposure by
considering a set of specified risk sources.
The risk-based modular approach considered in the Solvency II framework pro-
vides that the insurance company has to consider its global risk by dividing it into
single components, each one related with its specific source of risk. The modular
scheme considers n risk modules1. The generic risk module i− th (i = 1, ...,n) is
composed by mi sub-risks. We use the following notation for all variables that will
be defined: the first digit of the subscript identifies the risk module and is from 1
to n, the second one identifies the sub-risk and is from 1 to mi (where i identifies
the overlying risk module).

Definition 3.0.1 (Standard Formula). The solvency II capital requirement is de-
fined by means of a modular bottom up approach as follows (11):

I SCRi j is the capital requirement referred to the i j− th sub-risk and is calcu-
lated by means of a set of specific formulas provided by EIOPA.

II SCRi is the capital requirement referred to the i− th risk-module calculated
by aggregating the underlying sub-risks:

SCRi =

√√√√ mi

∑
x=1

mi

∑
y=1

SCRix ·SCRiy ·ρix,iy (3.1)

1Actually there are six risk modules: market risk, non-life underwriting risk, life underwriting
risk, health underwriting risk, default risk, intangible asset risk
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where ρix,iy represents the linear correlation coefficients. They are provided
by EIOPA and are equal for all insurance companies.

III BSCR is the capital requirement performed aggregating the underlying risk-
modules:

BSCR =

√
n

∑
i=1

n

∑
w=1

SCRi ·SCRw ·ρi,w (3.2)

where ρi,w represents the linear correlation coefficients. They are provided
by EIOPA and are equal for all insurance companies.

IV SCR is the overall capital requirement performed by adding certain other
components to the BSCR:

SCR = BSCR+Ad j+OPrisk (3.3)

where Ad j represents the adjustment for deferred taxes and for loss-absorbing
capacity of technical provisions and OPrisk is the capital requirement for op-
erational risk.

In this paper we consider only the BSCR excluding Adjustments and Opera-
tional Risk. This because their effect is measurable after calculating the SCR and
their allocation depends not on the aggregation scheme but on particular consid-
erations made by the Company. Furthermore, the adjustment for deferred taxes
calculation (whose relevance can be very high) requires the sub-risk allocation of
the BSCR as an input.

3.1. Standard Formula properties and remarks
The above reported aggregation formulas (Equations 3.1 and 3.2) call for fur-

ther considerations, and these may be illustrated as follows:

i As stated by EIOPA the overall SCR shall correspond to a specific risk mea-
sure, the Value-at-Risk (VaR), subject to a confidence level of 99.5% over a
one-year period so, in the intention of the Supervisor, it seems acceptable to
write SCR≈VaR99.5%.

ii In (9) EIOPA has specified that the correlation matrices used for the aggre-
gation of sub-risks (Eq. 3.1) and risk modules (Eq. 3.2) respectively, are
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estimated to minimize the aggregation error through the following formula-
tion: ∣∣∣∣min

ρ
VaR(X +Y )2−VaR(X)2−VaR(X)2−2ρVaR(X)VaR(Y )

∣∣∣∣ (3.4)

where X and Y are random variables that represent two different risks.

iii Each SCRix is calculated by means of specific methodologies stated by EIOPA.
The general principle for the calculation of a single sub-risk capital require-
ment SCRix is to apply a set of shocks to the risk drivers and calculate the
impact on the value of the assets and liabilities. The calibration objective - i.e.
the calibration using Value at Risk subject to a confidence level of 99.5% over
a one-year period - is extended to each individual risk module and sub-risk.

Remark 1. As well known, the structure with a square root of a quadratic expres-
sion and the use of correlation matrices produce a correct aggregation of quantiles
in case of any centered elliptical distribution, such as the (multivariate) normal
distribution2.

Remark 2. In the SCR calculation EIOPA does not put forward assumptions for
the distribution of the losses of each risk class and/or sub-risk, but the underlying
assumption of linear correlation and elliptic distribution are implicit and necessary
for the correctness of the aggregation formulas. These assumptions are very strong
because, as well known, in insurance problems the dependence among probability
distributions is not linear just as tail dependencies and the shape of the marginal
distributions are usually not skewed. As stated by Sandstrom (2007) (16) for
skewed distribution the normal approximation can imply an incorrect estimation
of the SCR and he proposes a method to transform, via Cornish-Fisher expansion,
the quantile distribution from a skewed into a standard normal distribution.

Remark 3. Leaving aside the well known criticism on VaR, on the (implicit) el-
liptical distribution assumption of each risk module or sub-risk and on the use of
linear correlation among risks, another relevant issue to the bottom-up aggregation
approach proposed by EIOPA is that it does not represent a ‘genuine’ bottom-up

2In case the expected values of the marginal distributions are zero. This simplifying assumption
is made in the standard formula which intends to quantify unexpected losses.
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approach to risk aggregation. By nesting (3.1) in (3.2) as follows:

BSCR =

√
n

∑
i=1

n

∑
j=1

[√
SCRT

i• ·Pi ·SCRi•

]
·
[√

SCRT
j• ·Pj ·SCRj•

]
·ρi, j (3.5)

Equation (3.5) is in general inconsistent with any multivariate distribution of
risks. As observed by Filipovic ((13)) a genuine bottom-up model uses a full base
correlation matrix B : M×M→ℜ (where M =m1+m2+ ...+mn) that aggregates
all risk types, across risk classes, together:

SCR =
√

AT ·B ·A (3.6)

where, A= [SCRi•, ...,SCRn•] is the vector of all sub-risk capital requirement
vectors.
Nevertheless, the only available information about correlation is contained in each
matrix Pi, i = 1,2, ...,n but is limited to the correlation coefficients among sub-
risks referred to the same risk modules. The missing correlation coefficients in B
are referred to sub-risks belonging to different risk modules (e.g. equity risk and
lapse risk) whose estimate is an arduous task.

Finally, the risk aggregation bottom-up approach provided by EIOPA has the
following properties and shortcomings:

• the overall SCR is based on a VaR risk measure so it involves all the coherent
risk measure properties3 excluding sub-additivity;

• the implicit elliptical distribution assumption underlying Equations 3.1 and
3.2) involves the sub-additivity property;

• the nested aggregation formula (3.5) is homogeneous of the first degree;

• the two-step aggregation formula proposed by EIOPA is inconsistent with
any multivariate probability distribution and does not represent a genuine
bottom-up approach as stated by Filipovic (13).

3see Artzener et al(2)
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The SCR computed using the Standard Formula should be interpreted as a
risk indicator that, given the formal inconsistencies of the aggregation approach
based on a unique standardized methodology permits a proxy of the VaR for the
unexpected loss only ideally. Notwithstanding the above mentioned issues, it is
suitable to represent the overall solvency condition of an insurance undertaking
because its value is coherent with the nature of risks assumed by the Company
and, moreover, it increases (or decreases) according to higher (or lower) risk as-
sumed.

4. Capital allocation of SCR under Solvency II Standard Formula

Notwithstanding the above mentioned limits, the Solvency II aggregation Stan-
dard Formula is largely adopted by (re)insurance undertakings in EU countries to
determine the overall risk capital. Due to the implicit sub-additivity property, it
involves a diversification effect that reduces the SCR in each aggregation step.
Once the diversification effect is determined we want to know what amount the
undertaking allocates to each risk-module or sub-risk, in order to know the real
capital absorption of each risk or to measure the financial performance of each
line of business or product. So, based on the properties of the Standard Formula
previously introduced, in the following we show how to assign the BSCR, net of
diversification effect, among sub-risks and coherently with the aggregation for-
mulas using a top-down approach as follows:

1. risk-allocation: allocate the BSCR among each i− th risk module to define
the relative allocated capital SCRA

i = π(Xi|X), so that the full allocation
principle is respected i.e. BSCR = ∑

n
i=1 SCRA

i ;
2. subrisk-allocation

(a) allocate the i− th risk module solvency capital requirement SCRi =
π(Xi) among each iy−th(iy = i1, ..., imi) sub-risk to define the relative
allocated capital SCRAi

iy = π(Xiy|Xi), so that the full allocation principle
is respected i.e. SCRi = ∑

mi
y=1 SCRAi

iy ;
(b) allocate BSCR among each iy− th sub-risk to define the relative allo-

cated capital SCRA
iy = π(Xiy|X), so that the full allocation principle is

respected i.e. BSCR = ∑
n
i=1 ∑

mi
y=1 SCRA

iy;

3. LoB-allocation: allocate the allocated SCRA
iy among sub-portfolios or Lines

of Business.
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In the following we demonstrate that the first two allocation steps above re-
ported are obtained by closed formulas while the allocation of sub-risk capital re-
quirement among Lines of Business is extendible to closed formulas only where
a square root aggregation formula is used for its calculation; e.g. to allocate the
Premium-Reserve Risk included in the Non-Life and Health underwriting risk
among the different Lines of Business defined by EIOPA.
Starting from equation (3.2) it is possible to obtain an explicit expression of the
allocated capital in each i− th risk-module SCRA

i as follows:

BSCR =

√
n

∑
i=1

n

∑
j=1

SCRi ·SCR j ·ρi, j =

=
∑

n
i=1 ∑

n
j=1 SCRi ·SCR j ·ρi, j

BSCR
=

=
n

∑
i=1

SCRi ·
∑

n
j=1 SCR j ·ρi, j

BSCR

(4.1)

The i-th net of diversification component is:

SCRA
i = SCRi ·

∑
n
j=1 SCR j ·ρi, j

BSCR
(4.2)

The solution stated in equation (4.2) is unique and respects the Full Allocation
property. Moreover, as we demonstrate in the following theorem it is fully com-
pliant with the Euler allocation principle:

Theorem 4.1 (BSCR allocation on risk module). In the case of the Solvency II
Standard Formula, the Euler allocation of the BSCR among the underlying risk
modules is uniquely determined as:

BSCR =
n

∑
i=1

SCRA
i =

n

∑
i=1

SCRi ·

n
∑
j=1

SCR j ·ρi, j

BSCR
(4.3)

where SCRA
i is the amount of the BSCR allocated on i-th risk module.
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Proof. From (3.2) we have that BSCR = f (SCR1, ...,SCRn) is a first degree homo-
geneous function, so from the Euler’s homogeneous function theorem we obtain:

BSCR =
n

∑
i=1

SCRi ·
∂BSCR
∂SCRi

(4.4)

where the partial derivative of BSCR respect to SCRi is:

∂BSCR
∂SCRi

=

n
∑
j=1

SCR j ·ρi, j

BSCR
(4.5)

so it results:

SCRA
i = SCRi ·

n
∑
j=1

SCR j ·ρi, j

BSCR
(4.6)

It is useful to define the Allocation Ratio, 0≤ ARi ≤ 1, as:

ARi =
∂BSCR
∂SCRi

=

n
∑
j=1

SCR j ·ρi, j

BSCR
(4.7)

As previously stated, starting from (3.1) we find out similar results for the SCRi
since it is a first degree homogeneous function and we can obtain the risk module
capital allocation on each related sub-risk.

Theorem 4.2 (SCRi allocation on sub-risk). In the case of the Solvency II Stan-
dard Formula, the Euler allocation of the i− th risk module SCRi among the un-
derlying sub-risks is uniquely determined as:

SCRi =
mi

∑
y=1

SCRAi
iy =

mi

∑
y=1

SCRiy ·
∑

mi
w=1 SCRiw ·ρiy,iw

SCRi
(4.8)

where SCRAi
iy is the amount of SCRi allocated on y-th sub risk and 0≤ ARiy ≤ 1 is
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the relative Allocation Ratio:

ARiy =
∂SCRi

∂SCRiy
=

∑
mi
w=1 SCRiw ·ρiy,iw

SCRi
(4.9)

Corollary 4.3. From theorems 4.1 and 4.2 we have:

BSCR =
n

∑
i=1

SCRA
i ≤

n

∑
i=1

SCRi =
n

∑
i=1

mi

∑
y=1

SCRAi
iy (4.10)

As a consequence it is necessary to find an alternative solution to allocate the
BSCR on each sub risk, as proposed in the following theorem:.

Theorem 4.4 (BSCR allocation on sub-risk). In the case of the Solvency II Stan-
dard Formula, the Euler allocation of the BSCR among underlying sub-risks is
uniquely determined as:

BSCR =
n

∑
i=1

mi

∑
y=1

SCRA
iy =

=
n

∑
i=1

mi

∑
y=1

SCRiy ·ARiy ·ARi =
n

∑
i=1

mi

∑
y=1

SCRAi
iy ·ARi

(4.11)

where the variable SCRA
iy is the amount of the overall BSCR allocated on y-th sub

risk.

Proof. From (3.5) we have that BSCR = f (SCR11, ..,SCR1m1, ..,SCRn1, ..SCRnmn)
is a first degree homogeneous function, so from the Euler’s homogeneous func-
tions theorem we obtain:

BSCR =
n

∑
i=1

mi

∑
y=1

SCRA
iy =

n

∑
i=1

mi

∑
y=1

SCRiy ·
∂BSCR
∂SCRiy

(4.12)

By using elementary algebra we know:

∂BSCR
∂SCRiy

=
∂BSCR
∂SCRi

· ∂SCRi

∂SCRiy
= ARi ·ARiy (4.13)
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thus:

SCRA
iy = SCRiy ·

mi
∑

w=1
SCRiw ·ρiy,iw

SCRi
·ARi (4.14)

For practical use, note that:

ARi =
∂BSCR
∂SCRi

=

n
∑
j=1

SCR j ·ρi, j

BSCR
=

SCRA
i

SCRi
(4.15)

By summarizing the above reported theorems allows us to express the follow-
ing relationship:

BSCR =
n

∑
i=1

SCRA
i =

n

∑
i=1

mi

∑
y=1

SCRA
iy =

=
n

∑
i=1

mi

∑
y=1

SCRiy ·

mi
∑

w=1
SCRiw ·ρiy,iw

SCRi
·ARi

(4.16)

Theorems 4.1, 4.2 and 4.4 provide closed formulas for the capital requirement
allocation among risk modules and sub-risks based on the Euler allocation princi-
ple. In the following, we refer to this result as Standard Formula Euler Principle
(SFEP).

As a summary, in this section we provide the three results as follows:

BSCR Allocation among risk modules.

From theorem 4.1

SCRA
i = SCRi ·

n
∑

w=1
SCRw ·ρi,w

BSCR
(4.17)

where SCRA
i is the amount of SCR allocated on i− th risk modules.
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BSCR Allocation among sub-risk.

From theorem 4.4

SCRA
iy = SCRiy ·

mi
∑

w=1
SCRiw ·ρiw,iy

SCRi
·ARi (4.18)

where SCRA
iy is the amount of SCR allocated on iy− th risk modules.

A generalization for BSCR allocation among sub-risk based on a r-level square
root aggregation scheme.

More in general, when a square root aggregation formula as the one proposed
by EIOPA is utilized to aggregate r levels, the top-down allocation formula in the
lower level is:

BSCR = ∑
l1,l2,...,lr

SCRA
l1,l2,...,lr =

= ∑
l1,l2,...,lr

SCRl1,l2,...,lr ·

mlr
∑

h=1
SCRl1,l2,...,,lr−1lh ·ρ

(l1,l2,...,lr−1)
r,h

SCRl1,l2,...,lr−1

·
r−1

∏
s=1

ARs

(4.19)

where the Allocation ratio at s− th level is:

ARs =
∂SCRl1,...,ls−1

∂SCRl1,...,ls
(4.20)

5. Case Study

In this section we provide a first simple example to perform a comparison be-
tween the SFEP and the other allocation methodologies introduced in 2.3. Our
aim is to assess the ineffectiveness of the latter methods to allocate SCR when the
square root aggregation formula in used. Furthermore, we show an application of
the proposed method for a full allocation of SCR on the single Line of Business
(LOB), as defined by EIOPA (12), based on a true data set provided by an anony-
mous Non-Life insurance undertaking.
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5.1. Comparison between allocation principles
For the SCR calculation and the subsequent allocation we consider a two-step

aggregation scheme based on n = 3 risk-modules composed by mi = 2 sub-risks,
with i = 1,2,3. The square root aggregation formulas (3.1) and (3.2) are used to
assess the SCRi, i = 1,2,3 and the overall SCR, respectively. The capital require-
ment for each sub-risk expressed in m.u. is:

Table 5.1: Sub-risk Capital Requirement
Risk -Module y = 1 y = 2 Tot
SCR1y 60 70 130
SCR2y 110 130 240
SCR3y 45 70 115
Tot - - 485

Assuming the following correlation matrices:

Pi =

[
1 0
0 1

]
(5.1)

P =

 1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

 (5.2)

By applying the square-root aggregation formula (3.1) we get:

Table 5.2: Risk Module Capital Requirement
Aggregation Level SCR DE
SCR1 112.69 17.31
SCR2 208.09 31.91
SCR3 100.37 14.63
Tot 421.16 63.84

As a result of the aggregation phase using (3.2) we get an overall SCR of 257.05
m.u. with a diversification effect among risk-modules of 164.10 m.u.. The over-
all diversification effect in the two-step aggregation method is 227.95 m.u. i.e. a
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decreases of about 53% of the sum of the capital requirement of each sub-risk.
In order to spread the overall SCR on each sub-risk we use the SFEP provided
in this paper compared to the Marginal Principle and the Haircut Principle in-
troduced in 2.3. We have not compared it with the Covariance Principle as well
because its application requires to know both variance and covariance among each
sub-risk: we are not able to know these due to general inconsistency of the aggre-
gation scheme of the standard formula with any multivariate probability distribu-
tion of risks4.

Table 5.3: Allocation Principle comparison
Level SFEP Marginal Haircut Marginal vs SFEP Haircut vs SFEP

in % in %
SCR1 49.41 43.84 68.78 -11.27 39.22
SCR2 168.45 178.43 127.00 6.16 -24.60
SCR3 39.19 34.38 61.26 -12.27 56.30
Tot 257.05 257.05 257.05 0.00 0.00
SCR11 22.17 21.62 31.80 -2.49 43.41
SCR12 27.23 24.77 37.10 -9.04 36.24
SCR21 74.89 80.04 58.30 6.88 -22.15
SCR22 93.56 94.77 68.90 1.29 -26.36
SCR31 14.01 14.50 23.85 3.56 70.30
SCR32 25.19 21.35 37.10 -15.25 47.28
Tot 257.05 257.05 257.05 0.00 0.00

The outcomes above reported show that:

• the Haircut principle produces a capital allocation strongly different from
SFEP and is not informative from a risk management point of view as it
fully respects the initial capital requirements of each sub-risk and does not
take into account the correlation among risks;

• the Marginal principle provides a numerical approximation for the partial
derivative of the total SCR related to each specific sub-risk. This allows to
obtain a proxy of the allocated capital coherent with the exact allocation
produced with the SFEP in terms of sign. However, it produces a larger
effect in terms of absolute values.

4as observed by Filipovic ((13) and remarked in section 3.1.
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5.2. BSCR Allocation among Lines of Business for a Non-life insurance
In section 4 we describe the procedure to be followed to allocate BSCR among

risks, sub risks and LoB. In this section we apply the methodology described
in section 4 focusing our attention on the allocation of the so-called Non-Life
Underwriting Risk risk module on its sub risks, i.e. Premium & Reserve, Lapse
and Catastrophe. The aim is to perform an accurate capital allocation among
LoB considering that Premium & Reserve and CAT sub-risk SCR are obtained,
under Standard Formula, with a square root aggregation formula; in these cases,
a three-level aggregation scheme is adopted by EIOPA. For other risk modules
the allocation formula here proposed is applicable for the sub risks allocation. In
any case, a market driven or other allocation principle may be adopted for LOB
allocation.

5.2.1. Data set and SCR calculation.
The BSCR is obtained by the aggregation of the following risk modules : 1

- Market, 2 - Default, 3 - Life Underwriting, 4 - Health Underwriting and 5 -
Non-Life Underwriting. Without loss of generality, we are not considering the
Intangible risk.
The first step we perform to calculate BSCR is the calculation of SCR5 (Non-life
underwriting risk module) by aggregating its sub-risks (SCR51 for Premium & Re-
serve Risk, SCR52 for Lapse Risk and SCR53 for CAT Risk). Thus, as a first step,
we start from the Premium & Reserve Risk whose capital requirement is com-
puted by means of a square root function of the volume measures of Premium and
Reserve risks similar to (3.1). Although not explicitly stated in (11), the Premium
& Reserve risk for each LoB can be alternatively obtained by separately com-
puting SCRpremium and SCRreserve and then aggregating with a linear correlation
coefficient of 0.5. It follows that:

As reported in Table 5.4, the company has a good risk diversification among
LoBs and the net of diversification (DE) capital requirement is:
SCR51 = 19,490,560 and DE51 = 27,476,524−19,490,560 = 7,985,964.

The CAT Risk (SCR53) requires the aggregation of two main sub risks, Man Made
and Natural, and within the latter a distinction between natural events such as
Earthquake, Flood, etc. (for further details see (11)). The SCR53 is obtained by
using a double level aggregation square root formula where correlation among
risks is generally null. In order to resume the outcomes we limit ourselves to re-
port the value obtained:
SCR53 = 10,248,826 and DE53 = 20,087,825−10,248,826 = 9,838,999.
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Table 5.4: Best Estimate Liability and Premium & Reserve Risk SCR
k LoB Name SCRpremium SCRreserve SCR51k
1 Motor vehicle liability 673,397 3,269,802 3,653,347
2 Other motor 1,056,640 2,550,459 3,211,891
3 Marine, aviation and transport 1,475,581 1,730,753 2,779,696
4 Fire and other damage to property 646,519 1,702,827 2,102,026
5 General liability 840,929 3,090,863 3,586,055
6 Credit 542,467 681,076 1,061,883
7 Legal expenses 184,146 2,545,219 2,642,109
8 Assistance 1,306,716 491,145 1,609,509
9 Miscellaneous financial loss 1,901,405 5,677,832 6,830,006
Σ 30,625,400 61,570,890 27,476,524

The Lapse Risk (SCR52) requires a scenario based approach depending on two
shocks and it does not require an aggregation formula, so we get the information
from our dataset where:
SCR52 = 552,645.

The second aggregation step consists in the application of (3.1) with i = 5 and
mi = 3; so we obtain:
SCR5 = 24,188,911 and DE5 = 31,135,851−24,188,911 = 6,103,119.

The third and last aggregation level is obtained by applying (3.2) to the n = 5
risk modules:
BSCR = 29,647,059 and DEBSCR = 6,218,424.

5.2.2. BSCR allocation among risk modules
After calculating the BSCR as previously stated, the first step for a top-down

allocation procedure is to allocate the BSCR among the 5 risk modules. For the
allocation we use the (4.17):

SCRA
i = SCRi ·

5
∑

w=1
SCRw ·ρi,w

BSCR
(5.3)
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Table 5.5: Risk module Allocation 1
Risk Module i SCRi SCRA

i ARi
Market 1 6,112,345 2,793,738 46%
Default 2 5,564,226 3,601,015 65%
Life Underwriting 3 0 0 -
Health Underwriting 4 0 0 -
Non-Life Underwriting 5 24,188,911 23,252,305 96%
Total 35,865,424 29,647,059

Table 5.6: Risk module Allocation 2
∑i SCRi 35,865,482
Diversification 6,218,424
BSCR 29,647,059

As can be observed from table 5.6, diversification effect accounts for approx-
imately 17% of the total (i.e. 6,218,424

35,865,424 ). From table 5.5, it can be noticed that
diversification effect is very high for the market and default risks. This depends
on the correlation coefficient involved in the calculation.

5.2.3. Non-Life Underwriting risk allocation
For the Non-Life Underwriting risk we can use the theoretical results provided

in section 4 to allocate Premium Risk, Reserve Risk and CAT Risk among LoB.
Instead we use a market driven approach for the lapse risk referring to the best es-
timate of liabilities as risk driver, given its low importance in a non-life portfolio.

Allocation among sub-risks.

From eq. 4.18 we have that:

SCRA
5 j = SCR5 j ·

3
∑

y=1
SCR5y ·ρ5x,5y

SCR5
·AR5 (5.4)

From Table 5.7 it is worth noting that the cumulative benefit of a double di-
versification effect is involved. The first diversification derives from the risk mod-
ule aggregation; the second one derives from the Non-Life sub-risk aggregation.
Specifically based on the available data, the Lapse risk will suffer such a substan-
tial reduction of the capital needed to cover it, as to become considered intangible.
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Table 5.7: Non-Life Underwriting SCR allocation among sub risks 1
NL UdW sub-Risk j SCR5 j SCRA

5 j AR5 j

Prem,Res risk 1 19,490,560 17,081,293 88%
Lapse 2 552,645 12,137 2%
CAT 3 10,248,826 6,158,875 60%
Total 30,292,030 23,252,305

Table 5.8: Non-Life Underwriting SCR allocation among sub risks 2
∑ j SCR5 j 30,292,030
Sub-risk Diversification 6,218,424
SCR5 24,188,911
Risk-diversification 936,606
SCRA

5 23.252.305

Premium and Reserve Risk allocation among LoB.

As previously carried out, the Premium & Reserve Risk (SCRA
51 = 17,081,293

and SCR51 = 19.490.560) can be accurately allocated among each LoB using the
general expression (4.19):

SCRA
51k = SCR51k ·

9
∑

s=1
SCR51s ·ρ51k,51s

SCR51
·AR5 ·AR51 (5.5)

Furthermore, by means of 4.19, we can allocate, for each LoB, the total Pre-
mium & Reserve risk dividing it into premium risk and reserve risk. We use the
following formula:

SCRA
51kz = SCR51kz ·

2
∑

h=1
SCR51kh ·ρ51kh,51kz

SCR51k
·AR5

·AR51 ·AR51k

(5.6)

where:

• the third digit of the subscript identifies the LoB and is from 1 to 9;
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Table 5.9: Allocation of Premium & Reserve SCR among LoBs 1
LoB (k) SCR51k SCRA

51k AR51k
1 3,653,347 2,360,846 65%
2 3,211,891 1,871,966 58%
3 2,779,696 1,497,000 54%
4 2,102,026 997,678 47%
5 3,586,055 2,113,211 59%
6 1,061,883 521,882 49%
7 2,642,109 1,596,281 60%
8 1,609,509 854,498 53%
9 6,830,006 5,267,930 77%
Total 27,476,524 17,081,293

Table 5.10: Non-Life Underwriting SCR allocation among sub risks 2
∑ j SCR51 j 27,476,524
LoB Diversification 7,895,964
SCR51 19,490,560
subrisk-diversification 2,409,266
SCRA

51 17,081,293
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• the fourth digit of the subscript identifies the premium risk (1) and reserve
risk (2).

Table 5.11: Allocation between Premium Risk and Reserve Risk
LoB (k) SCRA

51k1 SCRA
51k2

1 274,947 2,085,899
2 447,103 1,424,863
3 669,243 827,757
4 218,669 779,009
5 329,765 1,783,446
6 221,695 300,188
7 61,342 1,534,939
8 669,081 185,418
9 1,017,842 4,250,088
SCR 3,909,685 13,171,608

CAT risk allocation.

In the standard formula, the CAT risk is defined as the aggregation of four sub
risks: natural catastrophes, non-proportional reinsurance, man-made catastrophes,
other catastrophes. Non-proportional reinsurance and other catastrophe risks have
no further sub-risks. Natural catastrophes are divided in further sub-risks: wind-
storms, floods, earthquakes, hail, and subsidence perils. Man-made catastrophes
include motor, marine, aviation, liability and credit. The capital requirement is
obtained by means of a double level aggregation square root formula, so in order
to obtain the capital allocation we use (4.19). In this case study we consider a
portfolio with only natural catastrophe and man made catastrophes. In following
table we expose the results.

Table 5.12: CAT Risk allocation 1
CAT Risk j SCR53 j SCRA

53 j AR53 j

Natural CAT 1 4.342.148 1.105.509 25%
Man Made CAT 2 9.283.543 5.053.365 54%
Total 13.625.691 6.158.875
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Table 5.13: CAT Risk allocation 2
∑ j SCR53 j 13.625.691
Risk-level Diversification 3.376.866
SCR53 10.248.826
Upper level Diversification 4.089.951
SCRA

53 6.158.875

Table 5.14: Natural catastrophe risk allocation 1
CAT Nat Risk SCR531y SCRA

531y AR531y

Windstorm peril - - -
Flood peril 2.272.544 260.360 13%
Earthquake peril 3.699.972 802.694 22%
Hail peril - - -
Subsidence peril - - -
Total 5.972.516 1.105.509

Table 5.15: Natural catastrophe risk allocation 2
∑ j SCR531 j 5.972.516
Risk-level Diversification 1.630.368
SCR531 4.342.148
Upper level Diversification 3.236.639
SCRA

531 1.105.509

Table 5.16: Man-Made catastrophe risk allocation 1
Sub-risk SCR533y SCRA

533y AR533y

Motor 2.391.787 335.427 14%
Marine 3.438.637 693.307 20%
Aviation - - -
Fire 8.284.884 4.024.631 49%
Liability - - -
Credit - - -
Total 14.115.308 5.053.365
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Table 5.17: Man-Made catastrophe risk allocation 2
∑ j SCR532 j 14.115.308
Risk-level Diversification 4.831.765
SCR532 9.283.543
Upper level Diversification 4.230.178
SCRA

532 5.053.365

Once the allocated SCR is obtained for each sub-risk for natural and man-
made catastrophes, the allocation among LOBs is done considering a market
driven approach and using the amount insured by LOBs as risk driver. In our
case study, given the risks involved, we can consider each CAT sub-risk into its
specific LOB: Motor (LOB 1), Marine (LOB 2), Other risks (LOB 4).

5.3. Results
We are now able to know the effective capital absorption of each Line of Busi-

ness:

Table 5.18: Results
LOB Premium Risk Reserve Risk CAT Lapse Non-Life UdW Risk
1 274.947 2.085.899 335.427 2.592 2.698.865
2 447.103 1.424.863 - 1.992 1.873.958
3 669.243 827.757 693.307 915 2.191.223
4 218.669 779.009 5.130.140 1.225 6.129.043
5 329.765 1.783.446 - 1.830 2.115.041
6 221.695 300.188 - 209 522.091
7 61.342 1.534.939 - 1.282 1.597.563
8 669.081 185.418 - 170 854.669
9 1.017.842 4.250.088 - 1.922 5.269.852
Total 3.909.685 13.171.608 6.158.875 12.137 23.252.305

6. Conclusion

Based on the square root aggregation formula provided by EIOPA for Sol-
vency 2 Capital Requirements, we have formalized a closed solution for the allo-
cation problem coherent with the Euler Principle and applied in the standard for-
mula framework. The outcomes avoid proxies in capital allocation up to the initial
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elements involved in capital aggregation where a square root aggregation formula,
as the one represented in the paper, is applied. Furthermore, by means of specific
proxies, we have shown how to perform an SCR allocation among LOBs. The
availability of such information permits the shareholders to get in-depth knowl-
edge about the capital absorption. In this sense, it enables to perform a series
of strategic management actions that may be addressed for further research, for
example:

• the capital allocation optimization problem based on the return on absorbed
capital, where performance is measured in terms of the Risk Adjusted Re-
turn on Equity (RORAC)

• the reduction of the Solvency Capital Requirement in order to respect risk
appetite and risk tolerance constraints.
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