German Long-Term Health Insurance: Theory Meets Evidence

Juan Pablo Atal^a Hanming Fang^b Martin Karlsson^{c,d} Nicolas R. Ziebarth^e

^aUniversity of Pennsylvania ^bUniversity of Pennsylvania & NBER ^cCINCH, University of Duisburg-Essen ^dLund University ^eZEW, University of Mannheim and Cornell University

Conference on "Experience Ratings in Insurance Markets: Theory and Evidence" December 16, 2022

Automobile vs. Health

(a) Automobile

(b) Health

- Cross-sectional heterogeneity in risk: Large variations in risks across individuals;
- Life-cycle heterogeneity in risk: Predictable variations in risks over time;
- Moral hazard: Concern that insurance changes the "risk" realizations
- **Annual contracts:** Pricing of the contracts are annual; policyholders are subject to *reclassification risks*
- **Monitoring devices:** Health insurance: Health monitoring apps; automobile insurance: telematics; severe impacts from technological changes

• Life cycle risk patterns differ:

- Health insurance: older folks have higher expected medical expenditures (though infant years have somewhat higher health expenditures as well);
- Automobile insurance: From legal driving age onward, the risks decline and pick up at the very old age

Life Cycle Risk Profiles: Auto vs. Health

• **Outside options differ:** with automobiles, there is always an option of living without a car, and rely on public transportation, taxi, etc.; no such option with health.

Moral hazard differs:

- For health insurance, there are both ex ante (exercise, preventive care etc.), interim (expenditure conditional on being sick), and ex post (claims) moral hazard;
- Both consumers and care providers have moral hazards;
- For automobile insurance, ex ante moral hazard is the key.
- Pricing regulations differ: Health: community rating; Auto: Bonus-Malus
- Health insurance -¿ social insurance; auto insurance -¿ private insurance

(a) 1982

(b) 2022

Basic Setup

Reclassification Risk in Short Term Contracts

- Health insurance contracts sold in the private market tend to be short term, typically annual.
- Short-term contracts expose policyholders to potentially large premium fluctuations, a.k.a. **reclassification risk** \Rightarrow welfare losses (Diamond, 1992; Cochrane 1995).
- Options to regulate short-term health insurance: community-rated premiums and guaranteed issuance, e.g. in the ACA;
- Consequence: trade-off with *adverse selection*, requiring (controversial) remedies such as individual mandates or premium subsidies, or both.

Adverse Selection

Pauly et al. 1995

- Long-term private health insurance: alternative to provide policyholders with reclassification risk insurance without adverse selection problems.
- LT contracts leverage individuals' private intertemporal incentives: individuals are willing to pay upfront to insure themselves against the reclassification risk, *via* **frontloaded premiums**.
- Carefully designed LT contract can reduce reclassification risk, while ensuring market participation and eliminating adverse selection (Pauly et al. 1995).

- Despite theoretical appeal, few real-world applications: Germany and Chile are the only two countries with active markets of LTHI contracts.
- German LTHI: largest and oldest individual private LTHI market in the world with 8.8M individuals (10% of pop.)
 - Certain groups (e.g., self-employed, Civil Servants and earners >€59*K*): 44 private insurers.
 - Opting out of public option is a lifetime decision.
- Appealing features:
 - Stand-alone comprehensive insurance;
 - Pure financial contract (no differentiation in provider network across insurers or plans);
 - Simple pricing design.

- Present the main principles and functioning of GLTHI, formulate its theoretical foundations
- Leverage unique claims panel data and survey data to estimate key empirical inputs to assess the welfare.
- Compare welfare consequences of GLTHI to several benchmarks, including short term contracts and the optimal dynamic contract.

- Medical underwriting at inception:
 - Risk-rated premiums.
 - Pre-existing condition clauses allowed (rare 1.6 %).
 - No guaranteed issue coverage can be denied.
- In subsequent periods: Principle of constant, guaranteed premium:
 - Guaranteed renewability.
 - Premium increases community-rated at plan level.
- **One-sided commitment** (by insurer).

- At inception in *t* for risk type ξ_t : Offer is $P_t(\xi_t)$
 - $P_t(\xi_t)$ is the guaranteed premium for t, ..., T, regardless of future risk.
- $P_t(\xi_t)$ breaks even in expectation, given **endogenous lapsation**.
- Lapse in $\tau > t$ if (and only if) $P_{\tau}(\xi_{\tau}) < P_t(\xi_t)$ (symmetric learning).
 - Paid premiums *can only decrease* (when consumers lapse)

Pauly et. al (1995)

Modeling Premiums for the GLTHI (II)

• Lifetime premium offered in t < T solves the zero-profit condition:

$$P_t(\xi_t) = \frac{E(m_t|\xi_t) + \sum_{\tau>t}^T \delta^{\tau-t} \sum_z E(m_\tau|z) \times p_\tau(z|\xi_t, \mathbf{P_{t+1}}, P_t(\xi_t))}{1 + \sum_{\tau>t}^T \delta^{\tau-t} \sum_z p_\tau(z|\xi_t, \mathbf{P_{t+1}}, P_t(\xi_t))}$$

- $E(m_{\tau}|z)$ expected claims given type *z*.
- $p_{\tau}(z|\xi_t, \mathbf{P_{t+1}}, P_t(\xi_t))$: probability that
 - **(**) $\xi_{\tau} = z$ conditional on health state being ξ_t in period *t*;
 - (a) individual did not lapse (or die) between periods *t* and τ , given set of future premium guarantees \mathbf{P}_{t+1} .
- Fixed-point problem, solved by backwards induction, with

$$P_T(\xi_T) = E(m_T | \xi_T)$$

Optimal Contracts

- Optimal balance between reclass. risk and consumption smoothing (Harris and Holmstrom, 1982, Krueger and Uhlig, 2006, Ghili et al., 2020)
- Maximize lifetime expected utility s.t.
 - Break-even; one-sided commitment; symmetric learning; no-borrowing constraints.
- At inception in *t*: Offers a constant consumption guarantee $\bar{c}_t(\xi_t)$ for *t*, ..., *T*.
- Consumption "bumped up" at $\tau > t$ if $\bar{c}_t(\xi_t) < \bar{c}_\tau(\xi_\tau)$.
 - Consumption can only increase.
- Equivalent to GLTHI if income is constant over time.
- Requires knowledge of lifecycle income path.

Optimal Contract, w/ $y_1 = 10,000, y_2 = 12,000$

Short Term, w/ $y_1 = 10,000, y_2 = 12,000$

Pauly et al. (1995), w/ $y_1 = 10,000, y_2 = 12,000$

German Contracts, w/ $y_1 = 10,000, y_2 = 12,000$

Optimal Contract, w/ $y_1 = 10,000, y_2 = 12,000$

Three key objects:

Stimation: Dynamics in Risk and Expenditure

Insurer claims data.

Stimation: Life cycle income profiles

• Representative German household panel data (SOEP; 84-16):

Calibration and Robustness Checks: Stable preferences

• CARA utility and discount factor (exponential discounting).

- Claims data from one of Germany's largest insurance companies
- 400,000 individuals covering 2005–2011:
 - Personal characteristics age, sex, zip code, professional group.
 - Plan parameters risk assessment, deductible, premium.
 - Claims date, diagnosis, service type, amount.
 - Mortality deaths are observed (and part of our model).
- Our insurer doubled the number of clients between the 1980s and 1990s and has thus a relatively young enrollee population, compared to all GLTHI enrollees. Still, there are individuals who
 - Have been clients for up to 86 years.
 - Have had the same plan for 40 years.

Three steps:

• Generate health risk score for each person-year, based on claims, age, sex and pre-existing conditions; $\lambda_t^* \in [0, \infty)$: Adjusted Clinical Group (ACG) Software

(a) Discretize health risk; $[\lambda_{t-n}^*, .., \lambda_t^*] \rightarrow \lambda_t \in \{1, ..., k\}$ with a novel method. Main purposes

- Model health dynamics in a parsimonious way.
- O Capture degree of granularity in risk-rating used by actuaries.

Distribution of ACG Health Risk Scores λ_t^*

Three steps:

- Generate health risk score for each person-year, based on claims, age, sex and pre-existing conditions; $\lambda_t^* \in [0, \infty)$: Adjusted Clinical Group (ACG) Software
- **③** Discretize health risk; $[\lambda_{t-n+1}^*, .., \lambda_t^*] \rightarrow \lambda_t \in \{1, ..., k\}$ with a novel method. Main purposes
 - Model health dynamics in a parsimonious way.
 - O Capture degree of granularity in risk-rating used by actuaries.

• Estimate
$$E(m_t | \underbrace{\lambda_t, Age_t}_{\equiv \xi_t})$$
 and $\Pr(\lambda_{t+1} | \underbrace{\lambda_t, Age_t}_{\equiv \xi_t})$ (not shown).

Modeling Health Risk

We propose a new method for discretizing health risk

```
[\lambda_{t-n}^*,..,\lambda_t^*] \to \lambda_t \in \{1,...,k\}
```

Two steps, with following *guiding principles*

Decide efficient partition given *k* (and *n*). Finger (2006):

- *Homogeneity*: individuals in same risk category have similar risk;
- Separation: categories are sufficiently different in terms of expected claim to warrant distinct categories.
- Decide k (and n).
 - Parsimony

Modeling Health Risk: Steps 1 and 2, more details

O Efficient cutoffs ("given k"): For the case n = 1, solve (Finger, 2006),

$$\min_{c_1,\dots,c_{k-1}} \sum_{g=1}^k \int_{\lambda^*=c_{g-1}}^{c_g} \int_{m=0}^{\infty} f\left(m,\lambda^*\right) \left(m - \mathbb{E}\left[m \mid c_{g-1} < \lambda^* < c_g\right]\right)^2 \mathrm{d}m \mathrm{d}\lambda^*$$

where $f(m, \lambda^*)$ is the joint distribution of m and λ^*

- optimal cutoffs minimize the residual variations in health cost not summarized in categories
- We show it boils down to k-means clustering of λ^*
- Solution Number of Partitions (*k*) and lags (*n*): No improvement in explanatory power of partition for $P_t(\xi_t)$ (at inception)
 - We find R^2 stabilizes at k = 7.

Choosing the Number of Categories and Lags (Step 2)

Transition of Health Risks: $\lambda_{t+1} | \lambda_t$

25–29 years old

			λ_{t+1}									
Age	λ_t	1	2	3	4	5	6	7	8 (†)			
	1	0.8907	0.1024	0.0047	0.0011	0.0004	0.0003	0.0001	0.0004			
	2	0.3197	0.4257	0.2020	0.0432	0.0077	0.0011	0.0003	0.0003			
25-29	3	0.1242	0.2829	0.4104	0.1404	0.0378	0.0043	0.0000	0.0000			
	4	0.0892	0.1688	0.2484	0.3917	0.0860	0.0159	0.0000	0.0000			
	5	0.0938	0.1250	0.0625	0.3750	0.2917	0.0521	0.0000	0.0000			
	6	0.0909	0.0000	0.0455	0.2273	0.3182	0.3182	0.0000	0.0000			
	7	0.0000	0.0000	0.0002	0.0045	0.0240	0.1447	0.7619	0.0647			

λ_{25}	1	2	3	4	5	6	7
%	89.11	10.25	0.47	0.11	0.04	0.03	0.00
Expected claims	1,473	3,559	6,019	9.302	14,600	24,554	54,930
			(a)	GLTHI			
Premium Frontloading	3,973 <mark>2,499</mark>	5,517 1, <mark>957</mark>	7,563 1,545	10,363 1,062	15,291 691	24,561 7	54,930 0

- Data: 84-06 German SOEP
- We consider all sources of income beyond wages: equivalized post-tax post-transfer annual income.
- We estimate the following individual fixed effects model for 2 education groups:

$$log(y_{it}) = \theta_i + f(age_{it}) + \epsilon_{it}$$
(1)

- where: *y*_{it} stands for our income measure in 2016 U.S. dollars in year *t* for individual *i*.
- θ_i are individual fixed effects.
- The flexible function $f(age_{it})$ represents a piece-wise polynomial of age.

Income Profiles

λ_{25}	1	2	3	4	5	6	7
%	89.11	10.25	0.47	0.11	0.04	0.03	0.00
Expected claims	1,473	3,559	6,019	9.302	14,600	24,554	54,930
			(a)	GLTHI			
Premium	3,973	5 <i>,</i> 517	7,563	10,363	15,291	24,561	54,930
Frontloading	2,499	1,957	1,545	1,062	691	7	0
	(b) Op						
Premium	1,895	4,578	6,988	10,103	15,187	24,554	54,930
Frontloading	421	1,019	970	801	586	0	0

Contract Terms at Inception at age 25

λ_{25}	1	2	3	4	5	6	7
%	89.11	10.25	0.47	0.11	0.04	0.03	0.00
Expected claims	1,473	3 <i>,</i> 559	6,019	9.302	14,600	24,554	54,930
			(a)	GLTHI			
Premium	3,973	5,517	7,563	10,363	15,291	24,561	54,930
Frontloading	2,499	1,957	1,545	1,062	691	7	0
	(b) Optimal Ed 13						
Premium	1,895	4,578	6,988	10,103	15,187	24,554	54,930
Frontloading	421	1,019	970	801	586	0	0
			imal Ed 1	10			
Premium	2,571	5,366	7,489	10,307	15,273	24,554	54,930
Frontloading	1,097	1,807	1,471	1,006	673	0	0

Simulated Consumption Paths, Ed 13

Welfare criterion

• We simulate welfare using a CARA utility function.

$$u(c) = -\frac{1}{\gamma}e^{-\gamma c}$$

with $\gamma = 0.0004$

- Will examine the robustness of the results to γ and functional form (CRRA, Epstein-Zin).
- Discount Factor: $\delta = 0.966$ (same for insurance company and individual).
- Lifetime utility (considering mortality *S*_{*t*}), summarized with certainty equivalent annual consumption:

$$u(CE) = \frac{\mathbb{E}\left(\sum_{t=t_0}^{T} S_t \delta^{t-t_0} u(c_t)\right)}{\mathbb{E}\left(\sum_{t=t_0}^{T} S_t \delta^{t-t_0}\right)}$$

Main Result: Welfare Under Various Contracts (CE)

$C_{FirstBest}$	C_{ST}	C_{GLTHI}	C _{Optimal}	$\frac{C_{GLTHI} - C_{ST}}{C_{FirstBest} - C_{ST}}$	$\frac{C_{Optimal} - C_{GLTHI}}{C_{Optimal}}$
-----------------	----------	-------------	----------------------	---	---

Panel A: $\Delta_0 = \frac{1}{100} [89.11, 10.25, 0.47, 0.11, 0.04, 0.03, 0]$

Ed 10	22,980	-10,119	21,168	21,945	0.945	0.035
Ed 13	34,159	-2,223	25,088	26,093	0.751	0.039

Main Result: Welfare Under Various Contracts (CE)

	$C_{FirstBest}$	C_{ST}	C_{GLTHI}	$C_{Optimal}$	$\frac{C_{GLTHI} - C_{ST}}{C_{FirstBest} - C_{ST}}$	$\frac{C_{Optimal} - C_{GLTHI}}{C_{Optimal}}$			
Panel A: $\Delta_0 = \frac{1}{100}[89.11, 10.25, 0.47, 0.11, 0.04, 0.03, 0]$									
Ed 10	22,980	-10,119	21,168	21,945	0.945	0.035			
Ed 13	34,159	-2,223	25,088	26,093	0.751	0.039			
Panel B: $\Delta_0 = \frac{1}{100} [100, 0, 0, 0, 0, 0]$									
Ed 10	34,857	-1,954	26,125	28,115	0.763	0.071			
Panel C: $\Delta_0 = \frac{1}{100} [0, 0, 0, 0, 0, 0, 100]$									
Ed 10 Ed 13	13,261 24,631	-26,690 -24,214	-26,673 -24,212	-26,673 -24,212	0.000 0.000	0.000 0.000			

- German LTHI, simple design of long-term insurance, comes close to optimal contract in terms of welfare
- GLTHI performs surprisingly well: **between 0 to 7% welfare loss** compared to the optimal contract
 - GLTHI entails **excessive frontloading** (welfare loss equivalent to US 6,900 per year)
 - ...but largely compensated with higher insurance against reclassification risk
- Can long-term automobile insurance work?
 - Need to subsidize individuals when they are young, but charge a higher than actuarially fair premium when older
 - To prevent lapsation by older policyholders, need to introduce a non-renewal fee.

Thank you!