# Time-Varying Risk Aversion? Evidence from Near-Miss Accidents

Matthew Shum Yi Xin

California Institute of Technology

December 16, 2022 IVASS Workshop

# **Time-Varying Risk Aversion**

- Risk aversion is key preference parameter determining economic choices
  - Investment decisions, saving behavior
  - Insurance plans (health, auto)
  - Adoption of new goods, technologies, etc.
- Recent (mainly survey) evidence that risk aversion varies over time, shaped by *recent (adverse) experiences*:
  - Financial crisis: Guiso et al. (2018), Cohn et al. (2015), etc.
  - Natural disasters: Cameron and Shah (2015), Hanaoka et al. (2018), etc.
  - Violent conflicts: Jakiela and Ozier (2019), Brown et al. (2019), etc.
- We seek field evidence for time-varying risk aversion
  - Unique high-frequency data on driving behavior.
  - Do adverse events (driving mishaps) trigger change in risk preferences? (in which direction? welfare implications?)

#### **Near-Miss**

- We observe near-miss accidents/ "close calls"
  - Driving mishaps hard brakes and/or hard turns.
- Unlike real accidents:
  - More frequent, *do not* trigger a change in insurance contracts.
  - No pecuniary incentive to adjust driving behavior.
- Lab evidence that NM's induce behavior change. (Dixon and Schreiber (2004), Clark et al. (2012), Billieux et al. (2012), etc.)
- NMs attenuate risky behavior if they "can be recognized and interpreted as disasters that *almost happened*" (Tinsley et al., 2012).

## Institutional Background

- A Chinese insurance tech firm:
  - produces a mobile phone app that tracks users' driving patterns using phone functions. Screenshots of the app Trip start and end pages
- While firm serves as a "front-end" auto ins brokerage, few users utilize this.
  - 6.25% of users actually request insurance quotes
- Information on users' driving patterns is *not* used in insurance pricing; drivers know this.
  - Drivers have little incentive to improve driving based on feedback from app.

#### Data

- Detailed trip-level info:
  - A nationwide representative sample of 56,000+ drivers, 2015–2018.
  - Observe starting and ending time and location
  - Observe driving mishaps ("near-misses", "close-calls"): hard brakes/turns, aggressive accelerations.
  - Observe risky actions: use of cellphones while driving, driving at night, driving on highways (risk factors for accidents)
- For a subset of these users, who *request insurance quotes* via the app:
  - We observe demographics, characteristics of their vehicles, insurance quotes/purchase decisions.
  - We match with insurance claims data: filed claims, repair history (use in robustness checks, evaluating welfare implications)

#### **Measures of Near-Miss**

| Variable                 | Mean                                | Std. Dev. | Min | Max | Obs       |  |
|--------------------------|-------------------------------------|-----------|-----|-----|-----------|--|
|                          | (a) Hard brakes                     |           |     |     |           |  |
| No agg in the trip       | 0.3171                              | 0.4654    | 0   | 1   | 1,602,177 |  |
| No agg in the last 5 min | 0.5812                              | 0.4934    | 0   | 1   | 1,602,177 |  |
| Original                 | 0.7410                              | 0.4381    | 0   | 1   | 1,602,177 |  |
|                          | (b) Hard turns                      |           |     |     |           |  |
| Left turns               | 0.1504                              | 0.3575    | 0   | 1   | 1,602,177 |  |
| Right turns              | 0.0905                              | 0.2869    | 0   | 1   | 1,602,177 |  |
| U turns                  | 0.1589                              | 0.3656    | 0   | 1   | 1,602,177 |  |
| Any turns                | 0.2659                              | 0.4418    | 0   | 1   | 1,602,177 |  |
|                          | (c) Have both hard brakes and turns |           |     |     |           |  |
| No agg in the trip       | 0.1033                              | 0.3044    | 0   | 1   | 1,602,177 |  |
| No agg in the last 5 min | 0.2035                              | 0.4026    | 0   | 1   | 1,602,177 |  |
| Original                 | 0.2419                              | 0.4282    | 0   | 1   | 1,602,177 |  |

- Preferred measures: hard brakes/turns unaccompanied by aggressive acceleration – More likely to be *preventive actions*.
- NM's coincident with real accidents

### Measures of Risky Driving Behavior

| Variable          | Mean    | Std. Dev. | Min    | Max       | Obs       |
|-------------------|---------|-----------|--------|-----------|-----------|
| # of phone uses   | 0.0108  | 0.4020    | 0      | 130       | 1,602,177 |
| Distance (km)     | 36.6608 | 57.8538   | 0      | 1671.9800 | 1,602,177 |
| Duration (h)      | 1.3204  | 1.5435    | 0.0003 | 29.7122   | 1,602,177 |
| Speed (km/h)      | 25.3514 | 14.4986   | 0      | 199.8323  | 1,602,177 |
| Drive at night    | 0.2431  | 0.4290    | 0      | 1         | 1,602,177 |
| # of highway uses | 0.2107  | 0.7737    | 0      | 27        | 1,602,177 |

Summary statistics – other covariates

## First Glimpse: Change in Risky Behavior after NM

• At face value: NM precipitate a sizeable drop in risky behavior.

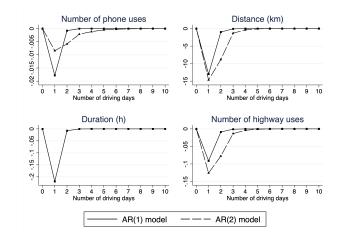
|   | Day t | Phone use | Distance | Duration | Speed   | Drive at night | Highway |
|---|-------|-----------|----------|----------|---------|----------------|---------|
| ſ | 0     | 0.0194    | 47.3733  | 1.7360   | 25.2869 | 0.2966         | 0.2841  |
|   | 1     | 0.0079    | 36.3753  | 1.3226   | 25.2024 | 0.2450         | 0.1986  |
| L | 2     | 0.0075    | 34.3800  | 1.2397   | 25.2892 | 0.2332         | 0.1867  |
|   | 3     | 0.0075    | 33.1763  | 1.1882   | 25.4404 | 0.2264         | 0.1842  |
|   | 4     | 0.0061    | 32.3847  | 1.1594   | 25.4371 | 0.2226         | 0.1812  |
|   | 5     | 0.0049    | 31.9934  | 1.1295   | 25.5978 | 0.2217         | 0.1765  |
|   | 6     | 0.0046    | 31.4716  | 1.1151   | 25.5706 | 0.2166         | 0.1799  |
|   | 7     | 0.0032    | 31.0410  | 1.0923   | 25.6637 | 0.2137         | 0.1756  |
|   | 8     | 0.0016    | 30.4276  | 1.0736   | 25.7018 | 0.2130         | 0.1719  |
|   | 9     | 0.0016    | 30.3020  | 1.0598   | 25.6910 | 0.2120         | 0.1664  |
|   | 10    | 0.0027    | 29.8254  | 1.0426   | 25.6889 | 0.2112         | 0.1645  |

#### Estimating the Effects of NM on Risky Behavior

• A dynamic panel model with fixed effects.

$$y_{it} = \gamma y_{it-1} + \frac{\beta}{NM_{it-1}} + X_{it}\phi + \alpha_i + \varepsilon_{it},$$

- *y<sub>it</sub>*: one of our six measures of risky behavior.
- X<sub>it</sub>: additional conditioning covariates.
- $\alpha_i$ : driver fixed effects (can be correlated with  $NM_{it-1}$ ).
- $\varepsilon_{it}$ : assumed orthogonal to all RHS variables.
- Take FD to get rid of  $\alpha_i$  (Arellano and Bond, 1991)


$$\Delta y_{it} = \gamma \Delta y_{it-1} + \beta \Delta NM_{t-1} + \Delta X_{it}\phi + \Delta \varepsilon_{it}$$

Users experience shocks that jointly precipitate near-misses and risky behavior. We use  $weather_{t-2}$  as instruments.

# **Regression Results**

|                          | Phone use  | Distance  | Duration    | Speed        | Drive at night | Highway    |
|--------------------------|------------|-----------|-------------|--------------|----------------|------------|
|                          |            |           |             |              |                |            |
|                          |            |           |             | ard brakes   |                |            |
| No agg in the trip       | -0.0178*** | -12.98*** | -0.219***   | 0.660**      | 0.00271        | -0.0911*** |
|                          | (0.00486)  | (1.323)   | (0.0372)    | (0.289)      | (0.00955)      | (0.0130)   |
| No agg in the last 5 min | -0.0100*** | -13.49*** | -0.214***   | 0.845***     | 0.000414       | -0.0771*** |
|                          | (0.00269)  | (1.322)   | (0.0372)    | (0.251)      | (0.00826)      | (0.0111)   |
| Original                 | -0.0121*** | -16.29*** | -0.278***   | 1.064***     | -0.000439      | -0.0935*** |
|                          | (0.00320)  | (1.549)   | (0.0445)    | (0.303)      | (0.0100)       | (0.0134)   |
|                          |            |           |             |              |                |            |
|                          |            | (b)       | Have both h | ard brakes a | nd turns       |            |
| No agg in the trip       | -0.0207*** | -25.56*** | -0.344***   | 1.465***     | 0.00130        | -0.143***  |
|                          | (0.00555)  | (2.550)   | (0.0689)    | (0.460)      | (0.0151)       | (0.0205)   |
| No agg in the last 5 min | -0.0110*** | -24.16*** | -0.199***   | 1.428***     | -0.00149       | -0.103***  |
|                          | (0.00297)  | (2.363)   | (0.0606)    | (0.342)      | (0.0114)       | (0.0154)   |
| Original                 | -0.0109*** | -24.56*** | -0.169***   | 1.444***     | -0.00196       | -0.101***  |
| 0                        | (0.00291)  | (2.398)   | (0.0605)    | (0.336)      | (0.0113)       | (0.0152)   |
|                          |            |           |             |              |                |            |
| Average values           | 0.0108     | 36.6608   | 1.3204      | 25.3514      | 0.2431         | 0.2107     |
| Observations             | 1,485,428  | 1,485,428 | 1,485,428   | 1,485,428    | 1,485,428      | 1,485,428  |

### How Long Do Effects of NM Last?



• 5-6 driving days in data  $\approx$  2-3 calendar weeks. Strong "recency" effect.

- Experienced vs. less-experienced drivers
- NM's occurring on familiar vs. unfamiliar roads
- Routine (commuting) vs. non-routine trips

- Next, we build a simple structural model of drivers' choice of risky behaviors.
- Estimate **whether** and **how much** change in risk aversion can explain changes in behavior before and after NM's.

#### Model

Drivers have CARA utility

$$u(c;\rho) = -\exp(-\rho c),$$

- c is risky payoff, depends on whether there is an accident
  ρ is the risk-aversion parameter to be calibrated; having a near-miss triggers change in risk-aversion
- Payoffs:

$$c = \begin{cases} \prod_j y_j^{\zeta_j} & \text{without accident} \\ \prod_j y_j^{\zeta_j} - \kappa & \text{with accident} \end{cases}$$

- $\prod_j y_j^{\zeta_j}$ : "subutility" from risky behaviors: phone uses, distance, highway
- Once an accident occurs, agents incur a cost, κ ≈ \$1065 (out of pock), \$213 (=20% deductible), \$107 (=10% deductible)

• Agent chooses risky behavior to maximize expected utility:

$$\mathbf{y}^{*}(X;\rho,\zeta) = \arg \max_{\mathbf{y}} \left[ \underbrace{\Pr(A|\mathbf{y},X)}_{\text{prob of an accident}} u(\prod_{j=1}^{J} y_{j}^{\zeta_{j}} - \kappa;\rho) + \underbrace{(1 - \Pr(A|\mathbf{y},X))}_{\text{prob of no accident}} u(\prod_{j=1}^{J} y_{j}^{\zeta_{j}};\rho) \right].$$

### **Estimation Results**

|                                                | (1)               | (2)              | (3)                |
|------------------------------------------------|-------------------|------------------|--------------------|
|                                                | $\kappa =$ \$1065 | $\kappa =$ \$213 | $\kappa =$ \$106.5 |
| Risk aversion before NM: $\rho_0$              | 0.0037            | 0.0214           | 0.0478             |
|                                                | (0.0004)          | (0.5060)         | (0.0083)           |
| Percentage change of RA after NM 1: $\delta_1$ | 0.1054            | 0.1197           | 0.1248             |
|                                                | (0.0123)          | (0.2836)         | (0.0476)           |
| Percentage change of RA after NM 2: $\delta_2$ | 0.2823            | 0.3494           | 0.4377             |
|                                                | (0.0287)          | (0.1733)         | (0.1258)           |
| Parameter in payoff function: $\zeta_1$        | 0.0020            | 0.0043           | 0.0002             |
|                                                | (0.0043)          | (0.1503)         | (0.0027)           |
| Parameter in payoff function: $\zeta_2$        | 0.4177            | 0.2458           | 0.2012             |
|                                                | (0.0467)          | (0.0816)         | (0.0514)           |
| Parameter in payoff function: $\zeta_3$        | 0.0079            | 0.0046           | 0.0038             |
|                                                | (0.0024)          | (0.0114)         | (0.0013)           |

## Implied Accident Cost Reduction after Near-Misses

- NM ⇒ drivers become more risk averse ⇒ reduce risky behavior ⇒ reduction in the cost of insuring drivers.
- Estimate from the data
  - Average cost of an accident: 7342 CNY.
  - How long the level of risky behavior reverts back to the original level: about 2 weeks.
  - Near-miss (def 2) occurred on 10.33% of the driving days.
  - Users drive 215 days in a year (from survey).
  - Average annual auto insurance premium  $\approx 5710.03$  Yuan (est from quotes).

|                                               | Before NM | After NM 1 | After NM 2 |
|-----------------------------------------------|-----------|------------|------------|
| Pr(accident)                                  | 0.1296%   | 0.1242%    | 0.1194%    |
| Reduction in Pr(accident)                     |           | 0.0054%    | 0.0102%    |
| Reduction in Accident Cost (Yuan)             |           | 2.7754     | 5.2424     |
| Reduction in Accident Cost (Annualized; Yuan) |           | 189.22     | 116.43     |
| Reduction in Accident Cost (% of Avg Premium) |           | 3.31%      | 2.04%      |

# **Summary of Findings**

- Following near-misses, drivers drive more conservatively:
  - A reduction in driving distance of 12.98 km
  - Big drop in cellphone and highway uses.
- The effects last roughly 2–3 weeks.
- Such changes in behavior are consistent with an increase in risk aversion of 10.54–43.77%.
- Implied accident cost reduction: amounts to 2.04–3.31% of avg car insurance premium (116.43–189.22 CNY/person).

# **Policy Implications**

- The finding of time-varying risk aversion has implications for insurance pricing.
  - Experience rating raise premiums after at-fault claims is the dominant pricing scheme;
  - Logic underlying this reverses if drivers become more risk-averse after accidents.
- Our paper focuses on measuring *high-frequency* variation in driving behavior, whereas changes in insurance premiums occur at much lower frequency.
  - Our results may have direct implications for the design of "real-time" dynamic pricing policies.

## Login and Trip Summary Pages







### **Trip Start and End Pages**





80分

85分

注意力

环保指数



## **Summary Statistics: Other Covariates**

| Variable                 | Mean               | Std. Dev. | Min     | Max     | Obs       |
|--------------------------|--------------------|-----------|---------|---------|-----------|
|                          | (a) Driving scores |           |         |         |           |
| Control score            | 81.0513            | 5.5614    | 1       | 100     | 1,602,177 |
| Cautious score           | 81.7256            | 2.7264    | 45      | 100     | 1,602,177 |
| Focused score            | 82.2600            | 9.4508    | 17      | 100     | 1,602,177 |
| Driving score            | 81.2518            | 4.1803    | 28      | 100     | 1,602,177 |
|                          |                    | (b) Traff | ic conc | litions |           |
| Weekend                  | 0.2681             | 0.4430    | 0       | 1       | 1,602,177 |
| Rush hour (7-9am, 5-7pm) | 1.2943             | 1.1743    | 0       | 31      | 1,602,177 |
| # of traffic jams        | 0.5365             | 1.0110    | 0       | 31      | 1,602,177 |
|                          |                    | (c) Weath | er info | rmation | 1         |
| High temperature (°C)    | 22.0915            | 9.8028    | -30     | 45      | 1,602,177 |
| Low temperature (°C)     | 13.9506            | 10.0043   | -36     | 32      | 1,602,177 |
| Sunny                    | 0.2165             | 0.4118    | 0       | 1       | 1,602,177 |
| Rain/snow                | 0.2992             | 0.4579    | 0       | 1       | 1,602,177 |
| Cloudy/windy/foggy       | 0.4655             | 0.4988    | 0       | 1       | 1,602,177 |



# Are Drivers Learning from Near-Misses? (test 1)

- Changes in risk-aversion? Alternative explanation: drivers learn and improve their driving after NM.
- Compare experienced vs. inexperienced users:
  - Learning is likely less of a concern among experienced drivers.
  - Use drivers who requested insurance quotes through the app: information on car registration date.
  - Experienced drivers: vehicle registered before 2015.
- Findings:
  - Indeed: near-misses have a larger impact on inexperienced users – effects on driving distance and duration are much larger.
  - But even for experienced drivers, multiple RB's decrease after near-miss.

# Are Drivers Learning from Near-Misses? (test 2)

- A second assessment of the learning story: changes in risky behavior after near-misses on **familiar roads** are unlikely to result from learning.
- Familiar trips:
  - If similar routes have been taken by the user in the past based on the geographic coordinates of the starting and ending locations of each trip.
- Findings:
  - For three out of six measures (distance, duration, and highway uses), risky behavior significantly decreases after the user experienced near-misses on familiar roads.

### Validity of Using Weather as Instruments

- Problem: Serial correlation in weather
  - weather<sub>t-2</sub> may not be orthogonal to  $\varepsilon_{t-1}$ .
  - Drivers may adjust their plans in period t 1 (in  $\varepsilon_{t-1}$ ) in response to weather<sub>t-2</sub>
  - Especially pertinent for measures duration, distance, drive at night – which can be plausibly adjusted in difficult weather conditions.
- Consider "routine" drivers, who have little leeway in adjusting their driving plans.
  - Weekday commuters, driving at regular times/routes.
  - (also more likely to be a driver, rather than a passenger)
- Findings:
  - Four out of six measures still significantly negative; directions and magnitudes are comparable to the benchmark.