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Experience Rating
Old idea and new challenges.

Caricature on Bismarck’s social insurance program.
The True Jacob, No. 1, Stuttgart, January 1884.

◦ One of the first use cases is Bismarck’s social insurance
system in Germany in 1880s.

. The industrial accident insurance featured coarse experience
rating for member firms primarily as a “means to reduce
accidents.” (Guinnane and Streb, 2015)

◦ Modern experience-rating regimes are adopted widely across
private insurance industries

. Effective at claim mitigation (ex-post moral hazard); mixed
evidence on accident prevention (ex-ante moral hazard).

. Finer ratings often lead to higher penalties and
reclassification risk, effectively reducing risk-sharing.

. Accidents are useful to reveal risky drivers, but are too
sparse to differentiate among safer ones.

Full paper & slides at YJIN.IO
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Two Studies on the Use of Telematics Data in Auto Insurance
◦ 3 main differences between the economics of traditional (claim, age,...) data vs. telematics

1. mandatory vs. voluntary disclosure

2. data sharing (across insurers) vs. proprietary ownership

3. outcome-based vs. behavioral pricing

Full paper & slides at YJIN.IO
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Two Studies on the Use of Telematics Data in Auto Insurance

◦ 3 main differences between the economics of traditional (claim, age,...) data vs. telematics

1. mandatory vs. voluntary disclosure

2. data sharing (across insurers) vs. proprietary ownership

3. outcome-based vs. behavioral pricing

◦ methodological differences: economics vs. actuarial science

1. we use economic theory to model how consumers and firm behaviors respond to incentives.

2. we use (quasi-)experimental evidence to identify these behavioral responses, facilitating the
simulation of “counterfactual” worlds with different regulations and contract structures.

∗ consumers select into contracts, have moral hazard, inertia, and inattention problems; firms
optimize pricing and screening strategies to maximize profits facing oligopolistic competition.

? how should firms price on telematics data to (1) incentivize disclosure while capturing
“rent” from the data, and (2) moderate risky behavior and prevent accidents.

? what if regulators mandate that firms must share proprietary data with competitors?

Full paper & slides at YJIN.IO
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Jin and Vasserman (2019)
A simple OBD plug-in device that reveals “how people drive.”

Full paper & slides at YJIN.IO
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Private Passenger Auto
Full paper & slides at YJIN.IO
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Monitoring in Telematics Contract
Full paper & slides at YJIN.IO



5

Monitoring in Telematics Contract
Full paper & slides at YJIN.IO



5

Monitoring in Telematics Contract
Full paper & slides at YJIN.IO
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Monitoring is “Useful” in Two Ways...

controlling for all pricing observables and state-calendar-year fixed effects.

Result #1 Monitoring
changes consumer behavior
- drivers become 30% safer
when they are monitored

Incentive Effect: drivers can
exert effort to send a better
signal of their type (Fama
1980, Holmstrom 1999).

Result #2 Telematics data still
signals unobserved risk
differences across drivers
post-monitoring → safer drivers
are more likely to opt in.

Selection Effect: better
risk-rating can mitigate adverse
selection and improve
risk-sharing (Akerlof 1970, Einav
et al. 2010).

Full paper & slides at YJIN.IO
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...But Adoption is Limited by Large Demand Frictions

Result #3 Most drivers who can financially benefit from monitoring do not opt in.

◦ Friction against telematics opt-in is $93 on average

. privacy or hassle costs, etc.

. more severe in higher risk classes due to more potential savings.

. more severe for privately riskier drivers → exacerbates advantageous selection

◦ Friction against firm-switching costs the average consumer $284 per year.

. privately safer drivers at other firms are unlikely to switch firms due to telematics

. most important source of market power in the absence of proprietary data

. caveat: without market-level claims/choice data (track customers before they come to the
firm and after they leave), a “symmetric-firm” assumption is needed.

Full paper & slides at YJIN.IO
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Welfare Calculation: Current World - No Telematics World
Introducing monitoring increases firm profit, consumer welfare, and total surplus.

◦ firm did not change baseline
(opt-out pool) prices

◦ set resource cost of
monitoring is $35 per capita

Full paper & slides at YJIN.IO
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Welfare Decomposition: Allocative vs. Incentive Effect
assume away incentive effect: drivers are no safer when monitored.

◦ ∼64% of the surplus gain
comes from risk reduction
(incentive effect)

◦ competitive cream-skimming
with better risk information
(vs. Rothschild and Stiglitz
1976): overall profit ↓ and
quantity ↑

Full paper & slides at YJIN.IO
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Firm’s Pricing and Screening Strategies

◦ Firm’s profit motives: 2 considerations

. “invest-and-harvest” pricing dynamic

. opt-in pool cream-skims the opt-out pool

◦ Firm actions: 3 types of price adjustments for telematics

t = 0, telematics = 0 : κ0 surcharge opt-out pool

t = 0, telematics = 1 : κ1 discount opt-in pool

t = 1, telematics = 1 : κs degree of rent-sharing with opt-in drivers

Full paper & slides at YJIN.IO
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Optimal Pricing
Result #4: Product market competition → firm can’t coerce drivers into monitoring.

Current Regime Optimal Pricing

Proprietary Data Ban

Surplus & division (/capita/year)
Firm Profit +14.7
Competitor Profit −11.0
Consumer Welfare (in CE) +4.7
Total Surplus +8.4

Telematics Market Share (%) 3.0% 4.4% ↑

3.4%

Pricing: First Period (%)
Opt-out surcharge κ0 0.0% 2.7% ↑

1.6%

Opt-in discount κ1 4.6% 22.1% ↑↑

8.3%

Pricing: Second Period
Rent-sharing κs 1x 0.80x ↓

1.14x

Competitor rent-sharing κs,−f ? - -

1.81x

Full paper & slides at YJIN.IO
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Optimal Pricing
Result #4: Firm can raise profit by raising upfront discount expecting ex-post rent.
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Counterfactual Equilibrium: Information Sharing
Result #5: Data sharing undermines firm incentives to “buy” consumer data.

Current Regime

Optimal Pricing Proprietary Data Ban

Surplus & division (/capita/year)
Firm Profit −11.9
Competitor Profit +8.9
Consumer Welfare (in CE) −2.5
Total Surplus −5.5

Telematics Market Share (%)

3.0%

4.4% 3.4% ↓

Pricing: First Period (%)
Opt-out surcharge κ0

0.0%

2.7% 1.6% ↓
Opt-in discount κ1

4.6%

22.1% 8.3% ↓

Pricing: Second Period
Rent-sharing κs

1x

0.80x 1.14x ↑
Competitor rent-sharing κs,−f ?

-

- 1.81x

Full paper & slides at YJIN.IO
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Jin and Yu (2020): Smartphone Telematics in Ride-Sharing Insurance
An ML algorithm that identifies risky driving behaviors from smartphone sensor data with 99%+ precision and 70% recall.

Feature construction

Data cleaning

Smartphone Sensor Data

Full paper & slides at YJIN.IO
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Jin and Yu (2020): Smartphone Telematics in Ride-Sharing Insurance
An ML algorithm that identifies risky driving behaviors from smartphone sensor data with 99%+ precision and 70% recall.

Feature construction

Train model on ground-
truth data: ML classification

Validation using
holdout data

Data cleaning

Smartphone Sensor Data
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Data & Reduced-Form Results: Is there Ex-Ante Moral Hazard?
HPU strongly increases accident risk, but drivers do not reduce HPU when they are exposed to higher risk.

Handheld phone use (“HPU”) is risky

◦ Smartphone sensor data from self-insured ride-sharing firm

◦ HPU frequency jumps by 11X in the 30-second window before accidents

◦ Regression estimate =⇒ + 1 second/trip HPU → + 1% accident rate

Little ex-ante moral hazard w.r.t. HPU

◦ HPU is 38% riskier in trips with rain, but only lower by 1%

◦ Insurance coverage (provided by the firm) dropped significantly in some states, but HPU
did not change

→ Less insurance / more experience rating might mitigate claims but can’t prevent accidents!

Full paper & slides at YJIN.IO
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Field Experiment: Why is HPU Insensitive to Risk Exposure Changes?
An experiment says the role of inattention � preference.

1/3 drop on the first day; weekly progression: -21%,
-14%, -14%, -16%.

◦ treatment: one-time SMS to drivers
top-5% HPU freq. (76% HPU miles)

◦ no detectable change in driving hours
or other unsafe driving behavior

◦ “near-misses”/harsh braking: -8% (2%)

Full paper & slides at YJIN.IO
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Estimation & Counterfactual “First-Best” Contract

In the socially-optimal equilibrium, the average driver is
fully insured, pays $3.8 HPU charge per 100 miles driven.
The HPU reduction alone leads to 2% fewer accidents.

◦ 3 key parameters: price elasticity of
HPU, risk aversion, attention “wedge”

◦ estimated on experiment sample; allow
heterogeneity across drivers & trips

◦ simulate “first-best” contracts:

. full insurance raises HPU, but adding
a simple nudge can reverse its effect

. social-optimal charges/mile of HPU
are set to resolve moral hazard
externalities to the insurer (#1) and
to accident victims (#2)

uniform personalized
S.O. 1 $0.77 $0.40
S.O. 2 $1.20 $0.62

Full paper & slides at YJIN.IO
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Conclusion
Initial evidence validates the theorized potential of telematics, but more R&D is needed to push adoption and contract
innovation
as well as to understand the interaction with insurance equilibrium and regulations.

? How should firms price on telematics data to...

? ...incentivize disclosure while capturing “rent” from the data

. limited ability to coerce disclosure; main lever is the “invest-and-harvest” pricing dynamic

? ...moderate risky behavior and prevent accidents

. inattention limits (ex-ante) moral hazard → experience rating or insurance reduction cannot
prevent accidents, but direct pricing on risky behavior solves both

? What if regulators mandate that firms must share proprietary data with competitors?

. large demand frictions hinder adoption while raising the “cost” of data collection → protecting
firms’ data property right and incentivizing collection can outweigh ex-post markup concerns.

→ large potential for government intervention: centralized data collection avoids duplicate
efforts; coordination can lead to better disclosure equilibrium

Full paper & slides at YJIN.IO
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