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ABSTRACT 
 

Two Fong-Vasicek immunization results are discussed and applied in relation to asset 

portfolios of a sample of Italian insurance companies managing life insurance with-profit 

savings. Firstly, we analyzed the contribution of Fong and Vasicek (1984) providing a lower 

bound on the “shortfall” of an asset portfolio, managed with a duration-matching target, in the 

face of an arbitrary shock to the term structure of interest rates. A “passive” management 

strategy emerges, aimed at minimizing risk, such that the exposure to an arbitrary variation 

of the shape of the term structure is minimized with respect to a risk measure that is 

increasing with the cash-flows dispersion. Secondly, Fong and Vasicek (1983) approach is 

generalized, in line with the classical risk-return approach to portfolio management, in a 

model which overturns the “passive” perspective of minimum risk exposure and looks for only 

a partial risk minimization in exchange for more return potential. The empirical application 

shows that such a perspective may be proved useful to highlight which segregated funds can 

be re-positioned over the efficient frontier, at the chosen level of the firm’s risk appetite.  
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1 Introduction  

 

There are well known differences between the insurance and the banking business 

models. While traditional commercial banks rely upon maturity transformation (short term 

cash flow and medium-long term investments), insurance companies sell guarantees through 

a maturity matching between assets and liabilities.  

This matching and the general approach known as integrated management of assets and 

liabilities (ALM) has essentially the aim to cope with the interest rate risk, i.e. the risk of an 

asymmetric impact of interest rate movements to the asset and the liability side of the 

balance sheet. 

As an alternative to the basic cash flow matching solution, the duration concept, as 

suggested by Redington (1952), provided a feasible, more sophisticated but more vulnerable 

solution. In his seminal work, he introduced the term of immunization to indicate a balance 

sheet not exposed to interest rate movements. “Hedging” would be the modern equivalent
1
. 

The essential aspect is in the link between duration D and the price sensitivity to 

interest rates: 

𝐷 = −
1

𝑃

𝜕𝑃

𝜕𝑟
 

 

Considering the “equity duration” (in the broad sense of Surplus or Net Asset Value or 

Risk Capital: E = A - L), as an equilibrium indicator for the Equity position of a company 

against an overall variation in interest rates (a variation of their general, average level) we 

have:  

 

𝐷𝐸 = 𝐷𝐴 ∙
𝐴

𝐴−𝐿⏟
𝐸

− 𝐷𝐿 ∙
𝐿

𝐴−𝐿⏟
𝐸

 ⋛ 0.    

 

Equivalently, the equity duration can also be regarded as the duration of liability plus 

the product of leverage and mismatch
2
, in formulae 𝐷𝐸 = 𝐷𝐿 +

𝐴

𝐸
∙ (𝐷𝐴 − 𝐷𝐿).  

 Hence, given a duration mismatch, the higher the leverage the greater the sensitivity 

of equity to interest rates; or, in the other way round, given an asset leverage, the greater the 

duration mismatch the riskier is the value of equity in the face of interest rate changes. 

However, even if insurance companies are usually not particularly vulnerable to 

liquidity risk as long as the assured capital is not callable (or callable under severe surrender 

penalties), they daily face the problem of finding high investment returns for a given set of 

liabilities.    

In this respect, immunization, as a minimum (zero) risk approach, must be considered 

as a special case into the broader area of portfolio optimization, in which risk-return 

considerations provide an entire menu of management decisions, according to the firm’s 

propensity to risk (risk appetite) and financial market opportunities. As in Markowitz (1959) 

                                                

 
1
 See Appendix A for a review of the main results of the classical theory of immunization.   

 
2
 See Messmore (1990) who shows that if E>0 (the present  value of assets greater than the present value of 

liabilities) the immunization of E, i.e. DE=0, implies DA<DL. In the following we assume a fixed income portfolio 

with A=L. 
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famous portfolio approach, the efficient frontier presents different combinations of risk and 

reward among which no single solution can be considered efficient, independently of the 

firm’s risk aversion. 

Fong and Vasicek (1983) introduced this risk-return, double dimension into the 

immunization literature
3
. Following their approach, we shall provide an implementable model 

according to which an insurance company could estimate the efficient frontier facing its fixed 

income balance sheet and evaluate, against arbitrary interest rate movements, how distant 

its portfolio is from efficiency and how much risk it is bearing with the chosen asset-liability 

mix. 

In the next paragraph we shall consider the term structure movements as suggested by 

recent European stress tests and financial market dynamics. Then we analyze passive and 

active strategies of portfolio immunization, concluding the analysis with a recap of results and 

possible extensions.  

 

2 The movements of the term structure of interest rates 

 

It is well known that the movements of the term structure can be approximately 

decomposed in three basic elements: changes in the level, the slope and the curvature. The 

level consists of the mean interest rate across maturities (“average rate”), reducing the curve 

to a flat structure. The slope gives an increasing (decreasing) pattern to the curve and might 

be regarded as the differential between long and short rates (“term spread”). The curvature 

results in a humped or convex curve and takes into account asymmetric variations among 

short and long interest rates on the one side and medium-term rates on the other (“butterfly 

spread”). As shown in many empirical analyses, in “normal times” the level factor explains 

most of the historical variability of the interest rates, while the slope explains a residual 

amount and convexity only marginal variability
4
.  

 

Depending on their asset and liability composition, insurance companies will be 

differently affected by future levels and shapes of interest rates. 

The duration mismatch gives an approximate measure of this exposure: as shown in 

Fig. 1, country averages in Europe are widely dispersed, often far away from the perfect 

matching line
5
. This implies that market movements could impair the firms by different 

amounts, depending also on the different dynamics that will take place in real markets. 

However, as we shall see, even well matched countries, like Italy, Great Britain, 

Belgium, Spain and Portugal, are not immunized from general movements in the shape of 

the term structure.  

                                                

 
3
 All Vasicek’s papers have been recently collected in Vasicek (2016) 

 
4
 See Veronesi (2010), Ch. 4 for a basic treatment of this approach (Principal Component Analysis). In his 

estimates based on US data, the level component explains between 75% and 61%, of the variability,  the slope 

component between 22% and 20% and the curvature component between 1% and 16%, depending on the 

interest rate maturity (between 3 months and 10 years).   

 
5
 The EIOPA calculation of the liability side in Fig. 1 does not take into account all the contract optionality 

available in different countries so that the country relative positions could be altered.  
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For example, in its 2014 stress test exercises, EIOPA, the European Authority for 

Insurance and Pension Funds, paid attention to the most dangerous scenario of lowering 

rates
6
. 

   

 

FIG. 1 Duration of assets and liabilities in the EIPOA Stress Test Report 

 

 
 

 

The two considered low yield scenarios were given by the curve of the so called 

“Japanese Scenario” (blue line in Fig. 2), i.e. a scenario based on a long-lasting flattening 

view of the term structure and by the curve of the so called “Inverse Scenario” (not reported 

here).  

In Fig. 2 the two market term structure at the end of 2013 (green line or “Baseline 

scenario”) and at the end of 2014 (red line) are also given. Clearly, the “stressed” hypothesis 

has been overridden by the actual reality: the historical 2014 data (red line) can be regarded 

as a sort of “continuation” of the “Japanese scenario”.  

 

As can be seen, the hypothetical and the actual market movements are far from being 

a constant downsizing of the interest rates: the term structure of the shocks {∆(𝜏),   𝜏 =

1,2, … ,30}  is not flat across maturities, and, moreover, it is mostly quite far from the typical 

100 basis points assumption, ranging roughly from +20 bps to -120 bps.  

                                                

 
6
 For instance, see the Eiopa official presentation of the 2014 Stress Test in EIPOA (2014 a), slide 10.  
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According to the EIOPA 2014 Stress Test Report (EIOPA, 2014 b), the results of the 

stress exercise have been evaluated with respect to <<the size of duration mismatches 

between assets and liabilities as well as mismatches in internal rate of return of assets and 

liabilities>> which are <<considered the main drivers for the severity of an interest rate 

stress>>
7
.  

However, following the analysis here proposed, in case of the asymmetric shocks to 

the term structure, the classical “duration gap” analysis should be augmented taking into 

account also portfolio convexity and its effect to the balance sheet reaction to interest rate 

changes.  

 

 

FIG. 2 EIOPA 2014 Stress Test Scenarios for European interest rates 

 
 

 

3 Passive strategy: minimizing the “immunization risk” 

 

According to Fong and Vasicek (1983 a), the investment horizon (holding period) might 

be considered a strategic horizon with respect to which to guarantee some target return, 𝑅̅0 

fixed ex-ante at time 0.   

A lower bound for the ex post return is obtained by showing that the ex post portfolio 

value has a minimum percentage change (maximum shortfall) given by
8
:  

                                                

 
7
 See EIPOA (2014 b), section C, “Low Yield Module Description and Results”, paragraph 2, sub-paragraph 56.  

8
  See the Appendix A, Theorem 3 for a formal treatment.  
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∆𝐴0(𝐻)

𝐴0(𝐻)
≥ −

1

2
𝑀0

2
⏟

𝑒𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠

∙ max𝜏{∆0
′ (𝜏)}⏟        

𝑒𝑥𝑜𝑔𝑒𝑛𝑜𝑢𝑠

                         

 

where 𝑀0
2 is a variance of times to payment and it can be regarded as a risk measure, 

specifically a risk measure for the imperfect immunization provided by the duration-matching 

strategy. By definition:  

 

𝑀0
2 = ∑ (𝑠𝑗 − 𝐷)

2𝑚
𝑗=1 ∙ 𝑤𝑗,  

 

where D is the duration and the weights wj are given by the present values of the cash flows 

at time sj.  

Note that 𝑚𝑎𝑥{∆0′} is the maximum change of the slope of the current term structure 

across its maturities.  

In practice, the variation of the one-year forward rates 𝑟𝐹𝑊(0, , + 1) across the 

maturities is denoted by ∆0() and its maximum marginal change is taken as finite:  

 

𝑚𝑎𝑥 {
𝑑

𝑑
∆0()} = 𝐾0 = 𝑐𝑜𝑠𝑡                          

 

Note that, according to the Fong and Vasicek result, 𝑀2 is a risk measure in that it 

captures the exposure to any arbitrary movement of the discount curve. It suffices, therefore, 

to minimize M2 in order to reduce such exposure and this prudential strategy might be 

regarded as a “passive” management.  

 

As duration represents a time average, M2 is a time variance and can be expressed in 

terms of duration and convexity. Fong and Vasicek (1984) help us to understand it as a 

proper risk measure.  

Let us consider the case of two portfolios, the “bullet” and the “barbell”.  

A perfect “bullet” portfolio with maturity D has a minimum M2 of zero. In practice, it is 

composed by low-coupon securities with maturities close to D so that M2 is close to zero. 

Viceversa, a “barbell” portfolio is a set of very short and very long securities with large M2 

even if it has the same duration D.  

These two portfolios with equal duration D are differently affected by a positive twist of 

interest rates (steepening) – i.e. an asymmetric variation of interest rates at the short and the 

long end of the curve, producing a decrease in short rates and an increase in long rates.  

In fact, this twist has effects both in terms of “reinvested income” and “capital gain” 

because short term rates have become lower, producing lower coupon (higher cost prices) 

from reinvested income whilst long term rates are now higher, producing higher capital 

losses realized at the horizon. This will produce a shortfall of the portfolio value with respect 

to the target value (a negative twist will produce the opposite). But the two portfolios are 

differently (negatively) affected: the barbell portfolio (with higher M2) is penalized twice, 

because, due to the barbell profile, i) a greater number of securities/cash flows reach sooner 

the maturity date with reinvestment at lower interest rates (due to the downward shock on 
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short interest rates) and ii) a higher and longer portion of the portfolio will be outstanding 

after the horizon date, producing a higher capital loss, given that securities with longer 

maturities will depreciate more heavily.  

This means that both M2 and the risk of the barbell portfolio are greater than those of 

the bullet.  

Fixed coupon bonds are clearly affected by these effects and insurance firms, being a 

traditional investor for this kind of securities, cannot overlook the convexity of their portfolios. 

In Italy, for example, 56 life insurance companies total 429 billion euros of segregated 

funds
9
 (at market values of December 2014) and more than 50% (218 billion euros) are 

invested fixed coupon bonds.  

Using a sample of 13 medium-large life insurance companies (covering a market share of 

75% in terms of collected premiums) we have applied Fong and Vasicek (1983) lower bound 

to the fixed coupon
10

, Government Bond (BTP) portfolios of Italian with-profit segregated 

funds.  

 

In this sample, the duration gap, as of end 2013, is contained within a band of +/- 2 

years (Fig. 3), so that the perfect matching assumption can be considered as a first 

approximation and we can concentrate on the second-order, convexity effects.  

In order to calculate the portfolio sensitivity, the interest rate shock is assumed as an 

(instantaneous, time 0) reverse shift from the 2014 term structure back to the 2013 higher 

shape, i.e. it is assumed that the 2014 year end term structure instantaneously shifts back to 

the values prevailing a year before, performing a positive twist of the curve.  

                                                

 
9
 Italian segregated funds represent with-profit policies ruled under IVASS Regulation n. 38, limiting the alienation 

of securities from the fund only to selling operations. In particular, (see art. 9, co. 3), securities cannot be 

transferred to other funds of the company and must be held to maturity. The Italian profit participation mechanism 

works as follows. 

For single premium policies the insured capital is 

𝐶(0) =
𝑉0(1 + 𝑇𝑟)

𝑛

1 + 𝑤(1 + 𝑇𝑟)𝑛
, 

𝐶(𝑡) = 𝐶(𝑡 − 1)(1 + 𝜌(𝑡)), 

𝜌(𝑡) =
max(𝑞𝑅(𝑡), 𝐾) − 𝑇𝑟

1 + 𝑇𝑟
, 

 

where V0 is the paid premium, Tr is the technical rate, n is the policy maturity, w is the loading rate, R(t) is the 

year t gross return of the segregated fund, q is the participation rate, K is the guaranteed minimum rate. Note that 

the initial insured capital is calculated at the technical rate. The policy represents a participation mechanism 

where, each year, profit sharing cannot falls short of the guaranteed interest rate K, and the policyholder’s 

account (technical reserve)  is credited by a quota q of the investment profit R(t). In practice, the mechanism gives 

rise to an embedded option (cliquet option), where the extra yield qR(t), if greater than K, is annually “locked-in”. 

For annual premium policies, the insured capital is updated not in full but in proportion: 

𝐶(𝑡) = 𝐶(𝑡 − 1)(1 + 𝜌(𝑡)) − 𝐶(0)𝜌(𝑡)
𝑛 − 𝑡

𝑛
. 

Because of the profit participation mechanism, the liability cash-flows partly depend on the asset cash-flows, 

through the returns realized by the bonds in the segregated funds. Under low and stable interest rates, this effect 

is negligible.   

 
10

 For the sake of simplicity we applied the analysis only to fixed coupon bonds, even if floating or indexed 

coupons and callable bonds could be included as well.  

 



 

11 

 

The variation of forward rates around the Italian market duration (about 7 years) is 10 

bps:  

   

𝐾0 = max{Δ0′()} = 𝑟𝐹𝑊(𝐷) − 𝑟𝐹𝑊(𝐷 − 1) 
 ≅ 10 𝑏𝑝𝑠.  

 

The resulting shortfalls are shown in Fig. 4 for the 13 firms in the sample
11

.  

They highlight that, under the assumed scenario of instantaneous shock (i.e. non 

parallel, steepening shift), the insurance firms would stay relatively stable given that their 

bond portfolios would experience, at the liability horizon, downward variations within a range 

between -0.3% and -2.6%, these shortfalls being largely independent of the degree of 

duration mismatch. Consequently, the duration matching is not a guarantee of immunization.  

 

 

FIG. 3 Duration matching in the considered sample of insurance companies  

 

 
 

 

 

 

 

 

 

 

                                                

 
11

 The results hold true as an approximation because of the considered restrictive assumptions (single liability, 

partial portfolio, approximated duration matching etc.). Details on our input data and calculations are provided in 

Appendix B.   
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FIG. 4 Lower bound capital loss from the steepening of the term structure  

 

 
 

 

 

 

4 Active strategy: the risk-return tradeoff optimization 

 

Following Fong and Vasicek (1983 b), a more general approach in terms of risk-return 

optimization problem (analogous to Markowitz’s mean-variance analysis) could be set in 

which the objective function is a general utility function of the expected return and risk of the 

bond portfolio. 

 

Let 𝑅̅0(𝐻) be the current annual ex-ante return over the horizon H. By definition:  

 

(1 + 𝑅̅0(𝐻))
𝐻 ≡

𝐴0(𝐻)

𝐴(0)
 

 

In case of no shift of the term structure, the ex-ante is also the ex-post rate of return. 

As shown in the Appendix A, after an instantaneous non constant shift of the term 

structure we have: 

 

∆𝑅0(𝐻) ≃
1

𝐻

∆𝐴0(𝐻)

𝐴0(𝐻)
≃
1

𝐻
𝑀0

2(H)∆S0(𝐻) 

 

where: 

∆𝑆0(𝐻) ≡
1

2
[∆0

2(𝐻) − ∆0
′ (𝐻)] ⋛ 0 

-1,5%
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is a special function of the term structure shift from time 0 to time 0+ and maturity H (see 

Appendix B). 

Note that this function is the sum of a “shift in level” component (“convexity effect”), always 

positive, 2, and a “slope of shift” component ’, (“risk effect”) of ambiguous sign. In case of 

adverse shift (0
2<0’,  S0<0) the realized return will be under the target value.  

The portfolio risk can be measured by the volatility (standard deviation) of ∆𝑅̅0(𝐻) and 

it is proportional to the dispersion measure M0
2. As explained by Fong and Vasicek (1983 b, 

p. 235): ”A portfolio with half the value of M2 than another portfolio can be expected to 

produce half the dispersion of realized returns around the target value when submitted to a 

variety of interest rate scenarios than the other portfolio”. 

 

Summing up (or integrating) all the shape changes between 0 and H-1 we have:  

 

𝑅𝐻(𝐻) − 𝑅̅0(𝐻) = ∑ ∆𝑅𝑡(𝐻)

𝐻−1

𝑡=0

≃
1

𝐻
∑𝑀𝑡

2(𝐻)∆𝑆𝑡(𝐻)

𝐻−1

𝑡=0

 

 

where the difference, 𝑅𝐻 − 𝑅̅0, between the future annual rate (
𝐴𝐻(𝐻)

𝐴(0)
)

1

𝐻
− 1 and current 

forward rate is a random variable (sum of H random variables ∆𝑆𝑡(𝐻)), with mean and 

variance  𝜇𝐻 ≡ 𝐸(𝑅𝐻 − 𝑅̅0),  𝜎𝐻
2 ≡ 𝑉𝑎𝑟(𝑅𝐻 − 𝑅̅0) . 

 

In practice, in all financial markets, cash flows can be typically bought and sold only in 

pre-defined “bundles” (the coupon bonds) so that optimal management must be set in terms 

of available bond portfolios. 

Given a set of K different bonds, the portfolio return can be represented as a linear 

combination of K random variables:  

 

∑𝑤𝑖(𝑅𝑖𝐻 − 𝑅̅𝑖0)

𝐾

𝑖=1

 

 

with mean 𝜇𝑖𝐻 and covariance 𝝈𝒊𝒋 = 𝐶𝑜𝑣(𝑅𝑖𝐻  − 𝑅̅𝑖0, 𝑅𝑗𝐻  − 𝑅̅𝑗0) 

 

Clearly:  

 

𝑅𝑖𝐻 − 𝑅̅𝑖0 =
1

𝐻
∑ 𝑀𝑖𝑡

2 (𝐻)∆𝑆𝑡(𝐻)
𝐻−1
𝑡=0          i=1,…,K   

 

and we link the dynamics of 𝑀𝑖𝑡
2  and ∆𝑆𝑡 to their current values 𝑀𝑖0

2  and ∆𝑆0 as follows (see 

Fong and Vasicek, 1983 b): 

 

𝑀𝑖𝑡
2 (𝐻)∆𝑆𝑡(𝐻) ≅ 𝑀𝑖0

2 (𝐻) (
𝐻 − 𝑡

𝐻
)
3

∆𝑆0(𝐷𝑖0) (
𝐻 − 𝑡

𝐷𝑖0
) 
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where, if  𝐷0𝑖 is the i-th bond duration, we have
12

:  

 

𝑀𝑖0
2 (𝐻) =∑(𝑠𝑗 −𝐻)

2𝑤0𝑗

𝑚

𝑗=1

= 𝑀0
2(𝐷𝑖0) + (𝐷𝑖0 −𝐻)

2 

 

so that
13

:  

 

 𝜇𝑖𝐻 = 𝐸(𝑅𝑖𝐻 − 𝑅̅𝑖0) =
1

𝐻
∑𝑀𝑖𝑡

2 (𝐻)𝐸(∆𝑆𝑡(𝐻))

𝐻−1

𝑡=0

=
1

𝐻
𝑀𝑖0
2 (𝐻)𝐸(∆𝑆0(𝐷𝑖0))

1

𝐷𝑖0
∑

(𝐻 − 𝑡)4

𝐻3

𝐻−1

𝑡=0

, 

 

  𝑖𝑗 = 𝐶𝑜𝑣(𝑅𝑖𝐻 − 𝑅̅𝑖0, 𝑅𝑗𝐻 − 𝑅̅𝑗0) = 𝐶𝑜𝑣 (
1

𝐻
∑𝑀𝑖𝑡

2(𝐻)∆𝑆𝑡(𝐻)

𝐻−1

𝑡=0

,
1

𝐻
∑ 𝑀𝑗𝑣

2 (𝐻)∆𝑆𝑣(𝐻)

𝐻−1

𝑣=0

) 

=
1

𝐻2
𝑀𝑖0
2 (𝐻)𝑀𝑗0

2 (𝐻)(∑
(𝐻 − 𝑡)4

𝐻3

𝐻−1

𝑡=0

)

2

1

𝐷𝑖0

1

𝐷𝑗0
𝐶𝑜𝑣(∆𝑆0(𝐷𝑖0), ∆𝑆0(𝐷𝑗0)) 

 

The active strategy is to find the portfolio wi maximizing the objective function U, in 

mean and variance:  

 

 max
𝑤𝑖
𝑼(𝒘′, 𝒘′𝒘)  

{

∑ 𝑤𝑖 ∙ 𝐷𝑖0 =1≤𝑖≤𝐾   𝐻 (𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡) 
∑ 𝑤𝑖 = 11≤𝑖≤𝐾     (𝑏𝑢𝑑𝑔𝑒𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡)

𝑤𝑖 ≥ 0   (𝑛𝑜 𝑠ℎ𝑜𝑟𝑡 𝑠𝑒𝑙𝑙𝑖𝑛𝑔)
  

 

where  is the vector of expected returns 𝜇𝑖𝐻 and 𝚺[𝝈𝒊𝒋] is the covariance matrix. 

 

As an example:  

 

𝑼(𝒘′, √𝒘′𝒘;𝝋) = 𝒘′𝝁 − 𝝋√𝒘′𝒘 

 

where the confidence level parameter  (implying the maximization of the lower bound of the 

return confidence interval) has the same role of the risk aversion parameter in Markowitz 

                                                

 
12

 Note that using (realistically) bonds instead of cash flows has no effect on the calculation of duration but it 

affects the calculation of risk. In fact, the duration of a portfolio of bonds is simply the “portfolio” (average) of bond 

durations; however, the M
2
 of a portfolio of bonds is the “portfolio” of M

2
 (within variance) plus the variance of 

durations (between variance). See the Appendix B. 

 
13

 Note that Fong and Vasicek (1983 b) assume, in the variance calculation, of the asymptotic approximation:  

∑𝑀𝑡
4

𝐻

𝑡=0

=
𝑀0
4

𝐻6
∑(𝐻 − 𝑡)6 =

𝐻

𝑡=0

𝑀0
4

𝐻6
𝐻(𝐻 + 1)(2𝐻 + 1)(3𝐻4 + 6𝐻3 − 3𝐻 + 1)

42 𝑓𝑜𝑟 𝐻
 
→∞

→        
𝐻

7
𝑀0
4 

so that  the variance is proportional to 
𝑀0
4

7𝐻
. We do not use this asymptotic approximation. 
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risk-return approach: the higher the parameter, the more relevant the effect of portfolio 

variance and the more conservative the preferred portfolio will be. For  = 0 the optimal 

portfolio will maximize the ex ante rate of return; for  large, the optimal portfolio is the 

passive portfolio with minimum immunizing risk.  

 

As in the classical Markowitz approach, the solution procedure can be divided in steps, 

the first one being the minimum variance portfolio for a given ex ante differential return m and 

the given horizon H: 

 

  min
𝑤𝑖
√𝒘′𝒘   

{
  
 

  
 ∑ 𝑤𝑖 ∙ 𝑖𝐻 =

1≤𝑖≤𝐾
𝑚

∑ 𝑤𝑖 ∙ 𝐷𝑖0 =
1≤𝑖≤𝐾

  𝐻 (𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡) 

∑ 𝑤𝑖 = 1
1≤𝑖≤𝐾

    (𝑏𝑢𝑑𝑔𝑒𝑡 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡)

𝑤𝑖 ≥ 0   (𝑛𝑜 𝑠ℎ𝑜𝑟𝑡 𝑠𝑒𝑙𝑙𝑖𝑛𝑔)

 

 

 

By varying m, the efficient frontier m() can be traced, for a given H.  

As an example, the following frontiers (Fig. 5) have been obtained by simplifying the 

Government bond market into four bond benchmarks with maturity 3, 5, 10 and 20 years 

respectively (see Appendix C) and by calculating the efficient frontiers with horizon (average 

duration) H= 7.5 (see Fig. 1) and H=10. 

Ten companies in our sample have approximately the given average durations and they lie 

somehow below the frontier. Considering that the model, by construction, cannot measure 

the “selection” effect of asset management, the vertical gap between each firm and the 

frontier is a measure of the “allocation” inefficiency of the firm’s portfolio. 

 

In general, assuming the horizon H as an additional control variable, an efficient surface 

m(,H) could be obtained, showing the portfolio possibilities for an “active” management 

strategy in terms of optimal return-risk-horizon trade-off. 
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FIG. 5 Efficient frontiers for immunized portfolios at different horizons  
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5 Conclusions and further developments 

 

Following the seminal work by Fong and Vasicek (1983, 1984), it is possible to actively 

manage the “immunization risk” of a duration-matching portfolio, i.e. a portfolio which, 

notwithstanding the equality of asset and liability durations (zero-duration gap or immunized 

portfolio), it has a risky expected return, being exposed to the effects of arbitrary shifts of the 

term structure of interest rates. 

This risk is proportional to a measure (M2) of the dispersion of the cash flow dates 

around the duration average so that, in this risk-return framework, you can build a 

generalized optimal management of the company bond portfolio essentially in the same way 

as asset managers choose the optimal portfolio along Markowitz’s efficient frontier. 

The empirical application of the model shows that it can disclose how distant the actual 

portfolio is from the efficient frontier, helping to select, along the frontier, the optimal bond 

portfolio corresponding to the firm’s risk appetite. 

Extensions of the analysis are manifold. Theoretically, one can attempt to consider the 

multiple-liability framework in order to be more consistent in the modeling of the life 

insurance business. Moreover, the shocks to the forward rates can be assumed to have an 

explicit stochastic dynamics, to be exploited in the calculation of moments. An the same time, 

the empirical implementation could take into account the complete set of bonds available in 

the financial market, in order to have more refined measures of risks, returns and the frontier. 

The calculation of a three-dimensional frontier (risk, return and horizon) could be easily 

implemented through this more refined modelling and it could be proved useful in 

generalizing the traditional profit testing activity for new insurance products. 
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Appendix A – The classical theory of immunization 

 

Let Aj for j=1,...,m be the cash flows of a bond portfolio available at time sj, j=1,...,m, 

0<s1<...<sm.  Let P(0,s) be the initial (time 0) discount function for maturity s. 

 

The current value of the assets is:  

 

 )s,0(sRexpd),0(rexp)s,0(P

where

)s,0(PA)0(A

s

0

FW

m

1j

jj























 

 

rFW(0,) initial instantaneous forward rate: 

 











),0(Pln
),0(rFW  

 

and R(0,s) is the initial spot rate for maturity s: 

 

𝑅(0, 𝑠) =
1

𝑠
∫𝑟𝐹𝑊(0, 𝜏)𝑑𝜏

𝑠

0

 

 

Let L  be the value of a single liability at the target time H, such that
14

: 

  














 

H

0

FW d),0(rexpL)0(L)0(A      (budget constraint) 

Note that L A0(H) is the forward, time H value of the portfolio calculated at time 0: 

 

𝐿̅ ≡ 𝐴0(𝐻) = 𝐴(0)exp (∫ 𝑟𝐹𝑊(0, 𝜏)𝑑𝜏

𝐻

0

) =∑𝐴𝑗exp (∫ 𝑟𝐹𝑊(0, 𝜏)𝑑𝜏

𝐻

𝑠𝑗

)

𝑚

𝑗=1

 

 

If forward interest rates do not change, the value of the bond portfolio at the target date is 

A(H)= L . If, instead, interest rates do change we could have )H(A ⋛ L . 

In fact: 

                                                

 
14

  This multiple asset – single liability case is equivalent to the case of an asset only bond portfolio with target 

horizon H and target value  

H

0

FW )d),0(rexp()0(AL  . 
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𝐴(𝐻) =∑𝐴𝑗P(H, 𝑠𝑗)

𝑚

𝑗=1

=∑𝐴𝑗exp (∫ 𝑟𝐹𝑊(𝐻, 𝜏)𝑑𝜏

𝐻

𝑠𝑗

)

𝑚

𝑗=1

= 𝐴𝐻(𝐻) 

 

The balance sheet is said to be immunized against interest rate movements if A(H)L  

and it would be interesting to find the conditions (if any) under which a given balance sheet 

has this property. 

Clearly, the immunizing conditions depend on the assets and liabilities as well as the type of 

movements assumed for the interest rates. 

 

Theorem 1 (constant shift) 

If the term structure of interest rates undergoes an additive and small constant shift from 

rFW(0,) to rFW(0+,)= rFW(0,)+0 then the balance sheet with liability L at time H (or the 

portfolio at the target horizon H) is immunized if the duration D(A) of the portfolio is equal to 

H. 

 

Proof. From the current budget constraint: 

 





























 



H

0

FW

s

0

FW

m

1j

j d),0(rexpLd),0(rexpA

j

 

 

or equivalently  

 

Lad),0(rexpA
m

1j

j

H

s
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m

1j

j

j
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












 
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Let  

)()),0((exp)( 0

1

00 HALdrArG
m

j

H

s

FWjFW

j















  



  

We have: 

 

0d)),0(r(exp)sH(A
G

d)),0(r(exp)sH(A
G

m

1j

H

s

0FW

2

jj2

0

2

m

1j

H

s

0FWjj

0

j

j








































 

 





 

 

so that G(rFW+0)=0 for 0=0 and G(rFW+0)0 for every 0 in a neighbourhood of 0, if 0=0 is 

a (local) minimum i.e. if: 

 

0d),0(rexp)sH(A
G m

1j

H

s

FWjj

00
j















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


 

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or 
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a
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d),0(rexpA
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m
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m
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


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 
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


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Multiplying and dividing by P(0,H) we have the duration condition
15

: 

 

H

d),0(rexpA

d),0(rexpsA

)A(D
m

1j

s

0

FWj

m

1j

s

0

FWjj

j

j



































 

 









  ■ 

 

This result is known as Fisher and Weil (1971) theorem. 

In simple words, the duration condition guarantees that, after the assumed constant shift, the 

gain (loss) obtained through the reinvestment effect of short term cash flows is not smaller 

(not greater) than the loss (gain) obtained via the price effect of the long term asset 

component of the portfolio.   

The special case of a flat term structure applied to the balance sheet of the life business of 

an insurance company (with multiple liability cash flows) had already been obtained by 

Redington (1952), who introduced also the term immunization “to signify the investment of 

the assets in such a way that the existing business is immune to a general change in the rate 

of interest” (ivi, p. 289). 

Samuelson (1945) provided a similar proof with application to the US banking system. 

The Redington’s “mean term” and the Samuelson’s “average time period” can be 

acknowledged as the Macaulay (1938) duration
16

.   

 

Note that the duration condition must be maintained over time, so that immunization is in fact 

a dynamic process. 

In terms of rate of returns, 
)0(

)(

)0(
)1( 0

0
A

HA

L

L
R H   so that 𝑅̅0 is the ex-ante target return 

evaluated at time 0, also obtained ex-post in case of stable interest rates. Taking logs and 

differentiating: 

 

∆𝑅̅0 ≃
1

𝐻

∆𝐴0(𝐻)

𝐴0(𝐻)
 

                                                

 
15

  Note that the second order (convexity) condition is always satisfied in the single liability case. 
16

  The duration measure was independently obtained by Hicks (1939) with the name of  “average period”. Earlier 

developments could be seen in Lidstone (1893). 



 

21 

 

and, under the Fisher-Weil hypotheses, ∆𝑅̅00 for any small, additive shift of the term 

structure.  

Fisher-Weil theorem has been generalized in terms of non-constant shift (Fong and Vasicek, 

1984, Shiu, 1987, 1990, Montrucchio and Peccati, 1991). 

 

Theorem 2 (non constant shift) 

If the term structure of interest rates undergoes an additive and non constant shift from 

rFW(0,) to rFW(0+,)= rFW(0,)+0()  then the balance sheet with liability L at time H (or the 

portfolio at the target horizon H) is immunized if the duration D(A) of the portfolio is equal to 

H (duration matching condition) and 0
2()  0’() for every  (“convexity condition”). 

 

Proof. Define:  

 














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0 d)(exp)s(f  

 

so that: 

 

f(H)=1 ,   f’(s)= - f(s)0(s) ,    f”(s)=f(s)[0
2(s)-0’(s)]0 (by the “convexity condition”) 

 

Then the change in value is:  


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m

1j

jj0FWFW0FW0 )1)s(f(a)r(G)r(G)r(G)H(A                          

and by Taylor (exact) formula: 
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


 (A.1) 

 

where the second equality comes from the duration matching hypothesis D=H and the 

inequality from the “convexity condition”.  ■ 

 

In general, if the term structure shift is not convex, the change in the forward value will be 

negative. 

 

As an alternative proof (Montrucchio and Peccati, 1991), define g  f-1, so that if f is convex, 

g is convex. Then:  
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))
~
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)( 0 XgE

L

rG FW 
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where X
~

is the random variable taking value sj with probability 
L

a j
. 

By Jensen inequality: 

 

0)())
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Note that the 0() is the term structure of the change in the forward rates rFW(0,) so that 

0’() is the slope of this change and the convexity conditions is satisfied if 0() is monotone 

decreasing (smaller changes the longer the maturity). More complex cases are given in 

Appendix B. 

 

An approximation is obtained using the Taylor formula around H:  

  

 )H(')H()Hs(
2

1
)H()Hs(1

)H("f)Hs(
2

1
)H('f)Hs()H(f)s(f

0

2

0

2

j0j

2

jjj





  

 

so that, for H=D:  
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where M0
2(D) is a variability measure of portfolio cash-flow times measured at time 0: 
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Note that M2 is a proper variance of times, given that D is the time average (duration). 

This implies M2=C-D2  where C is the asset convexity (average of times squared). 

 

The total effect is the sum of a “shift in level” component or convexity effect, always positive, 


2, and a “slope of shift” component ’, or risk effect, of ambiguous sign. Under the traditional 

approach of a constant, parallel shift of the term structure (=const, ’=0) the total effect is 
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due to convexity only and it is always positive, so that the burbell portfolio would gain an 

extra-return
17

. 

 

A lower bound for the change in value was obtained by Fong and Vasicek (1984) 

 

Theorem 3 (lower bound for non costant shift) 

If the term structure of interest rates undergoes an additive and non constant shift from 

rFW(0,) to rFW(0+,)= rFW(0,)+0()  and if the duration D(A) of the portfolio is equal to the 

maturity H of the liability L  (duration matching condition), then a lower bound for the change 

in value of the portfolio is: 
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where K0 is the maximum of 0’() and M0
2(D) was defined above.  

 

Proof. From the first order approximation for f(s)=ex(s) 1+x(s) we have: 
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By the integral formula: 
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so that, integrating and using the Fubini theorem to change the order of integration: 
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so that, using the duration matching condition D=H: 
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For this proof, Shiu (1987) uses the exact Taylor formula: 

 

                                                

 
17

 Clearly, interest rate dynamics implying constant shifts are not arbitrage-free. 
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Nawalkha and Chambers (1997) use higher order approximations for f(s) obtaining: 
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and Xq() is a polynomial function of the first q-1 derivatives of 0(). 

 

The extension to multiple liabilities was firstly considered in the Redington seminal paper. 

He expressed financial immunization by introducing (sufficient) conditions for a fixed income 

portfolio backing insurance commitments (spread across many maturities) to be immunized 

(i.e., protected) against parallel and small variations of a flat term structure. 

He proved that assets remain above liabilities in value if, subject to the initial balance 

constraint, the duration (time average) of asset cash flows equals the duration of liabilities 

and the convexity (time dispersion) of asset cash flows is greater than that of liability cash 

flows.  

As duration is the first derivative with respect to the interest rate, convexity represent the 

second derivative.  

This multiple liability immunization has been generalized by Shiu (1988). 
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Appendix B – The shift function 

 

The Fong-Vasicek (1984) sufficient condition for immunization is a constraint on the shift 

function t() = rFW(t+dt,) - rFW(t,): 

 

t
2() - t’() = c 0    

 

Note that the term “convexity condition” stems from the fact that under this condition the 

function:  

 














 

H

s

t d)(exp)s(f  

 

is convex (f’’(s)  0). 

Omitting the subscript, we can check that () = const (uniform additive positive or negative 

shift) satisfies the convexity condition. 

The same holds for any shift for which ’() is negative (decreasing term structure of shifts): 

for example () = exp(-a) for a=√c 0.  

In general, the convexity condition is an ordinary, non linear differential equation of the 

Riccati type. 

Using the substitution  = -u’/u we obtain: 

 

u’’() - c()u() = 0  

 

The special case c() =  is well known because one solution is the Airy function (Abramowitz 

and Stegun (eds.), 1964, ch. 10, p.446): 

 

𝑢(𝜏) =
√𝜏

3
[𝐼
− 
1
3
(
2

3
𝜏3/2) − 𝐼1

3
(
2

3
𝜏3/2)] 

 

where 𝐼𝜈(𝑥) is the modified Bessel function of order  (Abramowitz and Stegun (eds.) 1964, 

ch. 9 p. 375). 

The integral representation is:  

 

𝑢(𝜏) =
1

𝜋
∫ cos(

𝑥3

3
+ 𝑥𝜏)𝑑𝑥

∞

0

 

so that: 

 

∆(𝜏) =
∫ sin (

𝑥3

3 + 𝑥𝜏) 𝑥 𝑑𝑥
∞

0

∫ cos (
𝑥3

3 + 𝑥𝜏)𝑑𝑥
∞

0

 

 

In the stochastic case, the shift function is the stochastic change in the forward rate drFW(t,). 

In the Vasicek term structure model it is given by e-kdr(t), i.e. the change in the short term 

rate smoothed by a negative exponential.  
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Using the shift function implied by the EIPOA Stress Test (see Fig. 2) we obtain the 

convexity condition displayed in Fig. A1.  

 

FIG. A1 EIOPA shift function () and convexity condition  
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Appendix C – The stochastic approach to immunization 

 

Under the no-arbitrage approach of financial markets, the case of “flat shifts” and the 

immunization property A(H)  L  imply a riskless arbitrage and are therefore not compatible 

with equilibrium (Boyle, 1978, Ingersoll, Skelton and Weil, 1978). 

 

In continuous  time, under stochastic term structure models, the immunization condition 

means that the value of assets in the next instant must be equal to the value of liabilities, so 

that, in differential terms: dA(t) = dL(t) and immunization is guaranteed if the value of assets 

and liabilities have the same sensitivity to the state variables (Albrecht, 1985). This has 

suggested the definition of a generalized or stochastic duration concept (Cox, Ingersoll and 

Ross, 1979).  

 

As an example of this stochastic approach to the asset-liability problem, let us consider the 

case of the extended-Vasicek, no arbitrage term structure model (Hull and White, 1990):  

 

𝑑𝑟(𝑠) = [𝑎̂(𝑠) − 𝑘𝑟(𝑠)]𝑑𝑠 + 𝜎𝑑𝑍̂(𝑠) 

 

where the time-dependent drift 𝑎̂(𝑠) is obtained in order to guarantee a perfect fit of the 

theoretical term structure with the current yield curve:  

 

𝑎̂(𝑠) = 𝑘𝑟𝐹𝑊(𝑡, 𝑠) +
𝜕𝑟𝐹𝑊(𝑡, 𝑠)

𝜕𝑠
+
𝜎2

2𝑘
(1 − 𝑒−2𝑘(𝑠−𝑡)) 

 

The solution for r(s) is:  

 

𝑟(𝑠) = 𝑟𝐹𝑊(𝑡, 𝑠) +
𝜎2

2
𝐺2(𝑡, 𝑠) + 𝜎∫𝑒−𝑘(𝑠−𝑢)𝑑𝑍̂(𝑢)

𝑠

𝑡

 

𝐺(𝑡, 𝑠) =
1 − 𝑒−𝑘(𝑠−𝑡)

𝑘
 

 

and the relative difference between ex post and ex ante portfolio value is:  
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The variable Xtj has an explicit form in this case: 

 

𝑋𝑡𝑗 = ∫ (𝑟(𝑢) − 𝑟𝐹𝑊(𝑡, 𝑢))𝑑𝑢
𝐻

𝑠𝑗
=

𝜎2

2𝑘2
∫ (1 − 𝑒−𝑘(𝑢−𝑡))

2
𝑑𝑢

𝐻

𝑠𝑗
+ 𝜎 ∫ ∫ 𝑒−𝑘(𝑢−𝑣)𝑑𝑍̂(𝑣)

𝑢

𝑡
𝑑𝑢

𝐻

𝑠𝑗
  

 

with mean: 

 

𝐸(𝑋𝑡𝑗) =
𝜎2

2𝑘2
∫(1 − 𝑒−𝑘(𝑢−𝑡))

2
𝑑𝑢

𝐻

𝑠𝑗

=
𝜎2

𝑘3
[
𝑘

2
(𝐻 − 𝑠𝑗) + 𝑒

−𝑘(𝐻−𝑡) − 𝑒−𝑘(𝑠𝑗−𝑡) −
𝑒−2𝑘(𝐻−𝑡)

4
+
𝑒−2𝑘(𝑠𝑗−𝑡)

4
] 

 

and covariance 

 

𝐶𝑜𝑣(𝑋𝑡𝑖, 𝑋𝑡𝑗) = 𝜎
2𝐸 [∫ ∫𝑒−𝑘(𝑢−𝑣)

𝑢

𝑡

 

𝑑𝑍̂(𝑣)𝑑𝑢 
𝐻

𝑠𝑖

∫∫  

𝑠

𝑡

𝑒−𝑘(𝑠−𝑣)𝑑𝑍̂(𝑣)𝑑𝑠  
𝐻

𝑠𝑗

] 

= 𝜎2 ∫ ∫ ∫ 𝑒−𝑘(𝑢−𝑣)−𝑘(𝑠−𝑣)𝑑𝑣

min (𝑢,𝑠)

𝑡

𝑑𝑠𝑑𝑢

𝐻

𝑠𝑗

 
𝐻

𝑠𝑖

 

 

so that a risk-return approach can be analytically developed.  

 

  



 

29 

 

Appendix D – Some financial computations 

 

In this Appendix we give some technical details of the computations involving 

financial variables.  

 

▪ The computation of term structure changes 

In the empirical application we use daily data and we calculate, from the 1 year-forward 

rates, rFW(t,, +1) for =1,…,25 the daily changes: 

t()  rFW(t+1, ,+1) - rFW(t, ,+1) 

t’()  t(+1) - t() 

St()  ½ [t
2() - t’()] 

 

▪ The analytic, closed form computation of the portfolio cash-flow dispersion 

It is possible to compute in closed-form, i.e. via an analytic formula, the cash-flow 

dispersion of a securities portfolio. Portfolio cash-flow dispersion turns out to be a quadratic 

function of portfolio duration, of its yield-to-maturity and its convexity
18

:  

 

𝑀2(𝐷) = 𝐶𝑀𝑜𝑑 ∙ (1 + 𝑦)2 − 𝐷 ∙ (𝐷 + 1), 

 

𝑀 2(𝐷)= variance of the asset cash-flow maturities around their duration; y = portfolio yield-

to-maturity, D = portfolio duration (average time-to-maturity),  𝐶𝑀𝑜𝑑 = portfolio modified 

convexity. 

The variance with respect to Horizon H is obtained as: 

 

𝑀2(𝐻) = 𝑀2(𝐷) + (𝐷 − 𝐻)2 

 

▪ Yield, duration and convexity aggregation at portfolio level 

▪ The computation of the portfolio aggregate yield-to-maturity 

Traditionally one computes the average portfolio yield, weighted by the amount 

invested (w.r.t. either book-value or market value). This estimate represents an 

approximation to the yield-to-maturity as seen from the valuation date. A better alternative 

seems to consist of computing an estimate that takes into account the different time distance 

of cash-flows from the valuation date: one weights each yield by the “dollar duration” of its 

security. One obtains the so called WADD yield (Weighted Average Dollar Duration Yield, 

see Grondin (1998)). The Dollar Duration is the product of duration and price of a security.  

 

▪ The computation of average portfolio Duration and Convexity  

The (modified) duration was downloaded from Bloomberg, for each security in the data 

set (at the date 31/12/2014). Portfolio duration is the average (weighted by market value 

amounts) of the durations of single securities.  

                                                

 
18

 See for example, Smith (2010), p. 1670, formula (9) or de La Grandville (2001), p. 163, formula (19). With 

continuous compounding, the formula simplifies into M
2
=C-D

2
. 
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Convexity was also downloaded from Bloomberg, for each security (at the date 

31/12/2014). Bloomberg approximated the second derivative (of price w.r.t. yield) as the 

“central difference” by varying yield-to-maturity by +/- 1 basis point, that is
19

:    

 

𝐶𝑀𝑜𝑑 ≅
1

𝑃
⋅

𝑃+−𝑃 

∆𝑦
−
𝑃−𝑃− 

∆𝑦

∆𝑦
=
1

𝑃
∙
𝑃+−2∙𝑃 +𝑃−

(∆𝑦)2⏟  
∆𝑦=0,01%

= 10.000 ∙
𝑃+−2∙𝑃 +𝑃−

𝑃
.  

 

Convexity is a “quadratic” measure and hence it can be linearly aggregated (by 

summation): by weighting with the amounts (at market value) one obtains portfolio convexity.   

 

▪ The bond benchmarks for maturity classes 

The four bond classes used in the empirical application are represented by the following 

benchmark bonds: 

 

Bond index Bond ISIN 
Time-to-
maturity 
(years) 

Duration 
(years) 

Convexity  M-squared 

3 IT0004867070 2.84 2.72 10.31 0.21 

5 IT0003644769 5.09 4.58 27.08 1.54 

10 IT0004513641 10.17 8.27 86.32 9.59 

20 IT0003535157 19.60 13.46 241.60 46.84 

 

  

▪ M-squared for a portfolio of bonds 

Let BT=B1+B2 a portfolio of 2 bonds with cash flows c11, c12 and c21, c22 respectively at times 

t11, t12 and t21, t22 respectively. 

Using a flat term structure: 

B1=c11exp(-rt11)+c12exp(-rt12) 

B2=c21exp(-rt21)+c22exp(-rt22) 

 

D1=t11 c11exp(-rt11)/B1 +t12 c12exp(-rt12)/B1 

D2=t21 c21exp(-rt21)/B2 +t22 c22exp(-rt22)/B2 

DT=t11 c11exp(-rt11)/B1 B1/BT +t12 c12exp(-rt12)/B1 B1/BT 

       + t21 c21exp(-rt21)/B2 B2/BT +t22 c22exp(-rt22)/B2 B2/BT 

    = D1B1/BT+ D2B2/BT 

 

M2
1=( t11 –D1)

2 c11exp(-rt11)/B1 +( t12 –D1)
2 c12exp(-rt12)/B1 

M2
2=( t21 –D2)

2 c21exp(-rt21)/B2 +( t22 –D2)
2 c22exp(-rt22)/B2 

M2
T=( t11 –DT)

2 c11exp(-rt11)/B1 B1/BT +( t12 –DT)
2 c12exp(-rt12)/B1 B1/BT+ 

      +( t21 –DT)
2 c21exp(-rt21)/B2 B2/BT +( t22 –DT)

2 c22exp(-rt22)/B2 B2/BT 

     = [M2
1 +(D1-DT)

2 ]B1/BT +  [M2
2 +(D2-DT)

2 ]B2/BT  

 

 

                                                

 
19

 Bloomberg data include in the price P accrued interest (full price = clean price + accrued interest) and assume 

a variation of +/- 1 basis point w.r.t. the yield implicit in the price P.  
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