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Chapter 1

Poisson processes

1.1 The homogeneous Poisson process

An homogeneous Poisson process N(t) = N((0, t]) = N(0, t], t > 0, is a continuous-time stochas-
tic process taking integer values representing the number of events happening over a finite time
interval (0, t]. Its probabilistic evolution is governed by the following rules:

Definition 1.

1. Pr {N(0) = 0} = 1;

2. Pr {N(t, t+ dt] = 1} = λdt+ o(dt), con λ > 0;

3. Pr {N(t, t+ dt] = 0} = 1− λdt+ o(dt);

4. Pr {N(t, t+ dt] > 1} = o(dt);

5. If 0 = t0 < t1 < . . . < tn < t, the random variables N(tj−1, tj ] = N(tj)−N(tj−1), 1 ≤ j ≤ n,
are independent, i.e., the process has independent increments.

where N(s, t] is the number of events in (s, t] with s < t. Homogeneity means that the "intensity"
or "rate" λ (i.e. number of events per unit time) is constant. Note, in particular, that N(t)−N(s)

is independent of N(s)−N(0) = N(s).
The Poisson process describes the realisation of a flow of rare events. It is applied to a wide range
of phenomena such as the arrival of customers in a bank agency, floods, earthquakes, car clashes,
the number of particles emitted by a radioactive source, and so on (cf. Fig. 1.1).
From the previous assumptions we can extract several probabilistic information.

Theorem 1.1: The state probabilities pk(t) ≡ Pr{N(t) = k}, k ≥ 0, t ≥ 0, satisfy the following
difference-differential equations:

d

dt
pk(t) = −λpk(t) + λpk−1(t), k ≥ 0, t > 0 (1.1)

with initial conditions

pk(0) =

1 k = 0,

0 k > 0,
(1.2)
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1.1. THE HOMOGENEOUS POISSON PROCESS

Clearly ∀t p−1(t) = 0. In order to derive the equations (1.1)-(1.2), we write

pk(t+ dt) =Pr{N(t+ dt] = k}

= Pr
{
(N(t) = k,N(t, t+ dt] = 0) ∪ (N(t) = k − 1, N(t, t+ dt] = 1)⋃k

j=2(N(t) = k − j,N(t, t+ dt] = j)
}

= Pr{N(t) = k,N(t, t+ dt] = 0}+ Pr{N(t) = k − 1, N(t, t+ dt] = 1}

+

k∑
j=2

Pr{N(t) = k − j,N(t, t+ dt] = j}

= pk(t)(1− λdt) + pk−1(t)λdt+ o(dt)

(1.3)

From (1.3), equation (1.1) immediately emerges.
We used the additive property of probability and properties 2, 3, 4 above.

Theorem 1.2: The distribution of the homogeneous Poisson process is given by

pk(t) = Pr{N(t) = k | N(0) = 0} = e−λt
(λt)k

k!
, k ≥ 0, t > 0 (1.4)

The simplest method to obtain (1.4) is the technique based on the probability generating function
(for the p.g.f. see Appendix A)

G(u, t) =
∞∑
k=0

ukpk(t), t≥0, |u| ≤ 1. (1.5)

From (1.1) we can write

∞∑
k=0

∂pk(t)

∂t
uk =

∞∑
k=0

(−λpk(t) + λpk−1(t))u
k

= −λG(u, t) + λ

∞∑
k=0

pk−1(t)u
k

= −λG(u, t) + λ
∞∑
h=0

ph(t)u
h+1

= −λG(u, t) + λuG(u, t) = λ(u− 1)G(u, t)

(1.6)

thus obtaining the Cauchy problem: ∂
∂tG(u, t) = λ(u− 1)G(u, t)

G(u, 0) = 1.
(1.7)

The general solution of (1.7) is given by

G(u, t) = keλt(u−1), (1.8)

and since
G(u, 0) = 1 (1.9)
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1.1. THE HOMOGENEOUS POISSON PROCESS

we obtain that

G(u, t) = eλt(u−1) = e−λt
∞∑
k=0

(λt)k

k!
uk, t > 0, |u| ≤ 1. (1.10)

Comparing (1.5) and (1.10) we extract the distribution (1.4).

Remark 1.1 . The Poisson distribution from the Binomial
It is possible to obtain the Poisson distribution as a "special case" of the Binomial distribution
when n→ ∞, pn → 0 and npn = λ

Indeed, being pn = λ
n

lim
n→∞
pn→0

(
n
k

)
pn

k(1− pn)
n−k = lim

n→∞
n(n−1)...(n−k+1)

k! (λn)
k(1− λ

n)
n−k

= lim
n→∞

nk+O(nk−1)
k! (λn)

k(1− λ
n)
n−k

= lim
n→∞

λk

k!

(1−λ
n
)n

(1−λ
n
)k

= λk

k! e
−λ

Remark 1.2 . Note that the standard Poisson process is a continuous-time, discrete-space process
with independent increments such that
N(0) = 0 a.s.
Pr{N(t)−N(s) = k} ∼ e−λ(t−s) λ

k(t−s)k
k! k = 0, 1, 2, ...

Theorem 1.3: An alternative method is to resolve the equations (1.1) recursively.
The solution of  d

dtp0(t) = −λp0(t),

p0(0) = 1,
(1.11)

is p0(t) = e−λt with t > 0. If we suppose that

pk−1(t) = e−λt
(λt)k−1

(k − 1)!
, k ≥ 1 (1.12)

we obtain the following non-homogeneous linear equation

d

dt
pk(t) = −λpk(t) + λe−λt

(λt)k−1

(k − 1)!
(1.13)

with the initial condition pk(0) = 0 for k > 0. The equation (1.13) has the form

y′ + α(x)y = β(x) (1.14)

and its general solution reads

y(x) = e−
∫ x
0 α(z)dz

{∫ x

0
β(z)e

∫ z
0 α(w)dw + const

}
. (1.15)

3



1.1. THE HOMOGENEOUS POISSON PROCESS

So, after some calculation we have that

pk(t) = e−λt
{
λ

∫ t

0
eλse−λs

(λs)k−1

(k − 1)!
ds+ const

}
= e−λt

{
(λt)k

k!
+ const

}
= e−λt

(λt)k

k!
,

(1.16)

where the initial condition is pk(0) = 0, k ≥ 1, has been taken into account.

1.1.1 Properties of the homogeneous Poisson process

(i) Under the condition that N(t) = n, the distribution of the instants of occurrence of the n
events T1, · · · , Tn is

Pr{T1 ∈ dt1, · · · , Tn ∈ dtn | N(t) = n} =
n!

tn
dt1 · · · dtn, with 0 < t1 < t2 < · · · < tn < t

(1.17)
Proof. From property 5 and formula (1.4) we have that

Pr {T1 ∈ dt1, · · · , Tn ∈ dtn | N(t) = n} =
Pr {T1 ∈ dt1, · · · , Tn ∈ dtn, N(t) = n}

Pr {N(t) = n}

=
Pr {N(0, t1] = 0, N(t1, t1 + dt1] = 1, · · · , N(tn−1, tn] = 0, N(tn, tn + dtn] = 1, N(tn + dtn, t] = 0}

Pr {N(t) = n}

=

e−λt1︸ ︷︷ ︸
no jumps

λdt1︸︷︷︸
jump

· · · e−λ(tn−tn−1)︸ ︷︷ ︸
no jumps

λdtn︸︷︷︸
jump

e−λ(t−tn)︸ ︷︷ ︸
no jumps

(λt)n

n! e
−λt

= n!
dt1 · · · dtn

tn

(1.18)
To explain the intermediate step of (1.18), the following picture can be useful:

0 t1 t1 + dt1
...

tn−1 tn tn + dtn t

0 events 1 event 1 event

Note that if N(t) = 1, we have that

Pr {T1 ∈ dt1 | N(t) = 1} =
dt1
t
, 0 < t1 < t. (1.19)

and thus T1 is uniformly distributed in (0, t).
Note that Pr{T1 > t} = Pr{N(t) = 0} = p0(t) = e−λt and it is called the "survival probabil-
ity".
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1.1. THE HOMOGENEOUS POISSON PROCESS

(ii) The mean and variance of the Poisson process are1

E[N(t)] = λt

Var[N(t)] = λt
(1.20)

In fact

E[N(t)] =

∞∑
h=0

he−λt
(λt)h

h!
=

∞∑
h=1

he−λt
(λt)h

h!
= e−λt

∞∑
h=1

(λt)h

(h− 1)!

= e−λtλt

∞∑
h=1

(λt)h−1

(h− 1)!
= e−λtλt

∞∑
r=0

(λt)r

r!
= e−λtλteλt = λt

(1.21)

and

E[N(t)2] =
∞∑
h=0

h2e−λt
(λt)h

h!
= e−λt

∞∑
h=1

h
(λt)h

(h− 1)!
= e−λtλt

∞∑
r=0

(r + 1)
(λt)r

r!

= e−λtλt

[ ∞∑
r=0

r
(λt)r

r!
+ eλt

]
= e−λtλt

[
eλt

∞∑
r=0

re−λt
(λt)r

r!
+ eλt

]
= e−λtλt

[
eλtλt+ eλt

]
= λt(λt+ 1),

(1.22)
hence

Var[N(t)] = (λt)2 + λt− (λt)2 = λt (1.23)

(iii) The covariance is for s < t

Cov[N(s), N(t)] = E[N(s)N(t)]− E[N(s)]E[N(t)]

= E[N(s)(N(t)−N(s) +N(s))]− E[N(s)E[N(t)]]

= E[N2(s)] + E[N(s)(N(t)−N(s))]− E[N(s)]E[N(t)]

= λs+ λ2s2 + λsλ(t− s)− λsλt

= λs = λ(s ∧ t)

(1.24)

(iv) The first-passage time at level k is

Tk = inf{s : N(s) = k} (1.25)

with distribution

Pr{Tk ∈ ds} = Pr{N(s) = k − 1, N(s, s+ ds] = 1} = e−λs
(λs)k−1

(k − 1)!
λds

=
λk

Γ(k)
e−λsk−1ds

(1.26)

1Often empirical counting data, viceversa, exhibit significant overdispersion (possibily, underdispersion), i.e. an
index of dispersion D = σ2

µ
> 1 (D < 1): in this case the fit to a parametric model is improved by the adoption of so

called overdispersed (underdispersed) distributions, i.e. distributions such that the variance exceeds (is lower than)
the mean.
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1.1. THE HOMOGENEOUS POISSON PROCESS

and

Pr{Tk <∞} =

∫ ∞

0
e−λs

(λs)k−1

(k − 1)!
λds =

λk

(k − 1)!

∫ ∞

0
sk−1e−λsds

= using the change of variable w = λs

=
λk

(k − 1)!

∫ ∞

0
(
w

λ
)k−1e−w

dw

λ
=

1

(k − 1)!

∫ ∞

0
wk−1e−wdw =

1

(k − 1)!
Γ(k)

= 1.

(1.27)

This means that the Poisson process reaches any level k in finite time.

(v) The Poisson process N(t) has stationary increments in the sense that the distribution of
N(t)−N(s), t > s > 0 depends only on (t− s)

Pr{N(t)−N(s) = k} = e−λ(t−s)
λk(t− s)k

k!
(1.28)

Proof.

Pr{N(t) = k} = e−λt
(λt)k

k!

= Pr{N(t)−N(s) +N(s) = k} =

k∑
h=0

Pr{N(t)−N(s) = k − h,N(s) = h}

= (by independence of the increments)
k∑

h=0

Pr{N(t)−N(s) = k − h}Pr{N(s) = h}

=
k∑

h=0

e−λs
(λs)h

h!
Pr{N(t)−N(s) = k − h}

(1.29)

and the unique solution of the previous equation is (1.28). In fact

k∑
h=0

e−λs
(λs)h

h!
e−λ(t−s)

λk−h(t− s)k−h

(k − h)!
= e−λt

λk

k!

k∑
h=0

k!
sh(t− s)k−h

h!(k − h)!

= e−λt
λk

k!
[s+ t− s]k = e−λt

(λt)k

k!

(1.30)

(vi) The following property relates the Poisson process with the binomial distribution

Pr {N(0, s] = r | N(0, t] = k} =

(
k

r

)(s
t

)r(
1− s

t

)k−r
0 ≤ r ≤ k, 0 < s < t (1.31)

By taking into account the independence and the homogeneity of the increments of N(t)

6



1.1. THE HOMOGENEOUS POISSON PROCESS

(property 5), we can write

Pr{N(0, s] = r | N(0, t] = k} =
Pr {N(0, s] = r,N(0, t] = k}

Pr {N(0, t] = k}

=
Pr {N(0, s] = r,N(s, t] = k − r}

Pr {N(0, t] = k}
=

Pr {N(0, s] = r}Pr {N(s, t] = k − r}
Pr {N(0, t] = k}

=
e−λs (λs)

r

r! e−λ(t−s) [λ(t−s)]
k−r

(k−r)!

e−λt (λt)
k

k!

(1.32)

From (1.32), result (1.31) immediately follows.

Figure 1.1: Some homogeneous Poisson paths for λ = 1, λ = 0.5 and λ = 0.1.

(vii) By independence, the distribution of the sum of n independent Poisson r.v.’s is obtained by
the product of the p.g.f., which in the case of the Poisson distribution is GPoi(λ)(u) = eλ(u−1).
Therefore given n Poisson r.v.’s X1, ..., Xn with parameters λ1, λ2, ..., λn, the p.g.f. of the sum
Y = X1 +X2 + ...+Xn is

GY (u) =
n∏
i=1

GXi(u) =
n∏
i=1

eλi(u−1) = e
∑n

i=1 λi(u−1) = eΛ(u−1) (1.33)

where Λ =
∑n

i=1 λi.

The sum of n Poisson r..v.’s is Poisson with parameter Λ = λ1 + λ2 + ... + λn equal to the
sum of the single parameters.

7



1.1. THE HOMOGENEOUS POISSON PROCESS

1.1.2 Alternative definitions of the Poisson process

An alternative, equivalent definition of the homogeneous Poisson process is the following

Definition 2

1∗. Pr{N(0) = 0} = 1

2∗. Pr{N(t) = k} = e−λt (λt)
k

k!

3∗. The process has stationary, independent increments.

It is equivalent to Definition 1 because:

Pr{N(t, t+ dt] = 0} = Pr{N(t+ dt)−N(t) = 0}

= e−λt
(λdt)0

0!
= e−λt = 1− λdt+ o(dt)

Pr{N(t, t+ dt] = 1} = e−λdt
(λdt)1

1!
= λdte−λdt

= λdt(1− λdt+ o(dt)) = λdt+ o(dt)

(1.34)

A third equivalent definition makes use of the concept of interarrival times.
Let Tk be the time of the k-th event (T0 = 0). We define the n-th interarrival time τn as

τn ≡ Tn − Tn−1 (1.35)

so that τ1 = T1 and Tn =
∑n

k=1 τk.
Definition 3.

1∗∗. Pr{N(0) = 0} = 1

2∗∗. The interarrival times τn are i.i.d.
3∗∗. They have exponential distribution, i.e. Pr{τn ≤ t} = 1− e−λt ∀n

Note the no-memory property of the exponential distribution.

Pr{τ > t+ s | τ > s} =
Pr{τ > t+ s, τ > s}

Pr{τ > s}
=
Pr{τ > t+ s}
Pr{τ > s}

=
e−λ(t+s)

e−λs
= e−λt = Pr{τ > t}.

(1.36)

Remark 1.4 . Assuming a distribution different from the exponential we obtain a generalised
process called renewal process.

From Definition 3 we have Definition 1

Pr{N(t, t+ dt] = 1} = Pr{τ ≤ t+ dt | τ > t}

= Pr{τ ≤ dt} = 1− e−λdt = λdt+ o(dt)

Pr{N(t, t+ dt] = 0} = Pr{τ > t+ dt | τ > t} = Pr{τ > dt}

= e−λdt = 1− λdt+ o(dt)

(1.37)

8



1.2. THE WEIGHTED POISSON PROCESS OF ORDER I

1.2 The weighted Poisson process of order i

The Poisson process of order i, N (i), was introduced in 1984 and 1986 papers [5], [19].
The Poisson process of order i is also defined as a weighted sum of independent Poisson processes,
i.e.

N (i)(t) =
i∑

j=1

jNj(t) =
i∑

j=1

i∑
h=j

Nh(t). (1.38)

where the processes Nj(t) are i.i.d. Poisson processes, each weighted by j, and the process repre-
sents a flow of grouped events where arrivals are "grouped in packages".

The process (1.38) is also studied in [11].
Note that the processes are often assumed identically distributed, i.e. the arrival rate λ is unique.
The process can represent situations of multiple claims arrival or collective risks, possibly with
heterogeneous (and decreasing) arrival rates λ1 > λ2 > ... > λi.
Its probability generating function derives from a representation (cf. [6]) of the process as a com-
pound Poisson process with discrete-Uniform compounding distribution, i.e. N (i)(t) = X1 +X2 +

...+XNiλ
(t), where Niλ(t) is a Poisson process of rate iλ, and Xh are Uniform r.v.’s over the set of

the first i integers.2

Hence, it is obtained as

G(i)(u, t) = E
[
uN

(i)(t)
]
= E

[
u
∑Niλ(t)

h=0 Xh

]
= E

[
E
[
u
∑Niλ(t)

h=0 |Niλ(t)

]]
= E

[
E
(
uXh

)Niλ(t)
]

=

∞∑
h=0

E
[
uXh

]h · e−iλt (iλt)h
h!

= e−iλteiλt·Eu
X

= e−iλt(1−ψX(u))

(1.39)

where the p.g.f. of the discrete-Uniform is ψX(u) = u
i
1−ui
1−u

3.
An explicit expression of the state probabilities can be found by the coefficients of the p.g.f. (cf.
[10] for its expression for k > i)p

(i)
0 (t) = e−iλt

p
(i)
k (t) = e−iλt

∑k
h=1

(
k−1
h−1

) (λt)h
h! k = 1, 2, ..., i

(1.40)

One can note that the maximum number of events for a given i over an interval dt corresponds to

2Exploiting the discrete type distribution of the compound Poisson-discrete-Uniform representation, [10] provides
a Panjer-type recursion of the probability mass function:

p
(i)
1 (t) = λtp

(i)
0 (t)

p
(i)
k (t) = (2 + λt−2

k
)p

(i)
k−1(t)− (1− 2

k
)p

(i)
k−2(t) k = 2, 3, ..., i

p
(i)
k (t) = (2 + λt−2

k
)p

(i)
k−1(t)− (1− 2

k
)p

(i)
k−2(t)−

i+1
k

λtpk−i−1 +
i
k
λtpk−i−2 k ≥ i+ 1

where, as above, p(i)0 (t) = e−iλt.
3The p.g.f. of the discrete-Uniform r.v.’s Xh, given that the probability mass function of the discrete-Uniform

distribution over the set of the first i integers is 1
i
, is obtained as E[uXh ] =

∑i
k=1 u

k 1
i
= u

i
1−ui

1−u
.

9



1.2. THE WEIGHTED POISSON PROCESS OF ORDER I

the sum of the first i integers, i.e. the maximal jump size is i(i+1)
2 , which can be substantially larger

than 1.
Its mean and variance (cf. Fig. 1.2 and Fig. 1.3 resp.) follow the expression for the sum of the first
i integers, namely E[N (i)(t)] = λt

∑i
j=1 j =

i(i+1)
2 λt

V[N (i)(t)] = λt
∑i

j=1 j
2 = i(i+1)(2i+1)

6 λt
(1.41)

Figure 1.2: Mean of the weighted Poisson process w.r.t. the process index i (t = 1).

The process is overdispersed, that is the ratio of variance over the mean, also known as Fisher index
is greater than one, i.e. FI = 1 + 2

3(i − 1) > 1, which in turn increases with the order i of the
process.
A second representation is described in [6], where the process is represented as a pure-birth repre-
sentation of the weighted Poisson process, wherePr{N (i)(t+ dt) = h+ k|N (i)(t) = h} = λdt+ o(dt) k = 1, 2, ..., i (multiple jumps)

Pr{N (i)(t+ dt) = h+ k|N (i)(t) = h} = 1− iλdt+ o(dt) i = 0
(1.42)

and implicitly, for jumps of amplitude greater than i, Pr{N (i)(dt) ≥ i+ 1} ∼ o(dt).
Alternatively, a more compact notation is (see [11])Pr{dN (i)(t) = h} = λdt 1 ≤ h ≤ i

Pr{dN (i)(t) = 0} = 1− iλdt
(1.43)

10



1.3. SKELLAM PROCESS: THE DIFFERENCE BETWEEN TWO POISSON PROCESSES

Figure 1.3: Variance of the weighted Poisson process w.r.t. the process index i (t = 1).

1.3 Skellam process: the difference between two Poisson processes

The process obtained as the difference of two Poisson processes was studied first in 1946, by Skellam.
It is defined as S(t) = N1(t)−N2(t), where N1(t), N2(t) are independent Poisson processes, t > 0,
with rates λ1 > 0, λ2 > 0, and take integer values (i.e., both positive or negative). Jumps have
unitary size (for a Skellam process with multiple, "simultaneous" jumps of arbitrary size).
The probability mass function of S(t) turns out to be of the form

pk(t) ≡ Pr{S(t) = k} = e−(λ1+λ2)t(
λ1
λ2

)
k
2 I|k|(2

√
λ1λ2t), k ∈ Z ≡ {0,±1,±2,±3, ...} (1.44)

where Ik(x) is the modified Bessel function of the first kind, defined as Ik(x) =
∑∞

n=0
(x
2
)2n+k

n!Γ(n+k+1)

(cf. Fig. 1.4) .Of course, if λ1 = λ2 = λ the distribution {pk, k ≥ 0} is symmetric and reads
pk(t) = e−2λtI|k|(2λt); positive (negative) skewness corresponds to respectively λ1 > λ2 (λ1 < λ2).
The mean, variance, covariance and p.g.f. of the distribution are respectively

E[S(t)] = (λ1 − λ2)t,

Var[S(t)] = (λ1 + λ2)t,

Cov(S(t), S(s)) = (λ1 + λ2)min(s, t),

GS(u) = GN1(u)(u)GN2(
1
u)

(1.45)

-
Note that the process is oversdispersed.

Theorem 1.4: By the linearity of the differential operator, the state transition law is governed

11



1.3. SKELLAM PROCESS: THE DIFFERENCE BETWEEN TWO POISSON PROCESSES

Figure 1.4: Probability mass functions of the Skellam process with symmetry (λ1 = λ2 = 1) w.r.t. (t = 1).

by the differential equation

d

dt
pk(t) ≡ −(λ1pk(t)− λ1pk−1(t)) + (λ2pk+1(t)− λ2pk(t)) (1.46)

with initial conditions p0(0) = 1, pk(0) = 0.

Proof. During an infinitesimal interval of time of length dt the state probability pk(t) satisfies
the following relationship, i.e.

Pr{S(t+ dt) = k} ≡ pk(t+ dt)

= pk(t)(1− λ1dt)(1− λ2dt) + pk−1(t)λ1dt(1− λ2dt) + pk+1(t)(1− λ1dt)λ2dt

= pk(t)− pk(t)λ1dt− pk(t)λ2dt+ pk−1(t)λ1dt+ pk+1(t)λ2dt

(1.47)

and after rearranging terms and taking the limit for dt→ 0 the equation

d

dt
pk(t) = −pk(t)(λ1 + λ2) + λ1pk−1(t) + λ2pk+1(t) (1.48)

is obtained.
The sample paths of the Skellam process have unitary upwards and downwards jumps: as such
the Skellam distribution is suited for modelling data representing differences (e.g., soccer scorings)
or increments (e.g., up and down price movements). An actuarial example is the application to
experience (bonus-malus) rating in motor-vehicle insurance.
The moment generating function of the Skellam process reads as (see [4])

M(u; t) = E[euS ] = e−(λ1(eu−1)+λ2(eu−1))t |u| ≤ 1 (1.49)

12



1.4. THE NON-HOMOGENEOUS POISSON PROCESS

Remark 1.5 . The Skellam process is a special case of a birth-death process with λk ≡ λ1 and
µk ≡ λ2. See paragraph 4.

1.4 The non-homogeneous Poisson process

A generalisation of the Poisson process can be obtained by assuming that the rate function λ = λ(t)

depends on time t (cf. Fig. 1.5).
In this situation the definition of an homogeneous Poisson process can be rewritten as:

1. Pr {N(0) = 0} = 1;

2. Pr {N(t, t+ dt] = 1} = λ(t)dt+ o(dt), where λ(t) > 0, t > 0;

3. Pr {N(t, t+ dt] = 0} = 1− λ(t)dt+ o(dt);

4. Pr {N(t, t+ dt] > 1} = o(dt);

5. If 0 = t0 < t1 < . . . < tn < t, the random variables N(tj) − N(tj−1), 1 ≤ j ≤ n, are
independent,

so that equation (1.1) must be replaced by:

d

dt
pk(t) = −λ(t)pk(t) + λ(t)pk−1(t), k ≥ 0, (1.50)

with the initial conditions

pk(0) =

1 k = 0

0 k > 0
(1.51)

and p−1(t) = 0.
The probability generating function G(u, t), |u| ≤ 1, t > 0, emerges by solving the following partial

Figure 1.5: A typical sample path of the non-homogeneous Poisson path with non-linear (decreasing and
logistic) intensity (i.e., λ(t) = r(C−n0)

C−n0+n0ert
, where C, n0 and r are respectively the maximum point or capacity

of the system, the minimum point and the growth rate of a logistic growth).
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1.5. COMPOUND POISSON PROCESSES

differential equation:  ∂
∂tG(u, t) = λ(t)(u− 1)G(u, t),

G(u, 0) = 1.
(1.52)

From (1.52) it is clear that

G(u, t) = e−(1−u)
∫ t
0 λ(s)ds = e−

∫ t
0 λ(s)ds

 ∞∑
k=0

uk

[∫ t
0 λ(s)ds

]k
k!

 , (1.53)

so that the probability distribution of the non-homogeneous Poisson process becomes

pk(t) = e−
∫ t
0 λ(s)ds

[∫ t
0 λ(s)ds

]k
k!

, k ≥ 0.
(1.54)

1.5 Compound Poisson processes

Let N(t) be the number of claims generated by an insurance policy in a fixed time interval [0, t]
and let Xj , j ≥ 1, be i.i.d. r.v.’s and also independent from the random number N(t). If Xj is the
claim amount related to the j-th accident, the total amount of claims generated by this policy, in
the given fixed time period [0, t], is:

Z(t) =

N(t)∑
j=1

Xj . (1.55)

Theorem 1.5: The mean and variance of Z(t) are:

E[Z(t)] = E[N(t)] E(X)

Var[Z(t)] = E[X]2Var[N(t)] + E[N(t)]Var(X) = Var[N(t)][E2(X) + Var(X)] = Var[N(t)]E[X2].

(1.56)
Proof. For the mean

E[Z(t)] = E[E[Z(t) | N(t)]] = E[E[
N∑
j=1

Xj | N(t)]] = E[N(t)E[X | N(t)]] = E[N(t)]E[X] (1.57)

For the variance we use the following
Lemma 1: For arbitrary r.v.’s X, Y the following decomposition holds,

Var[Z] = EY [Var[Z | Y ]] + VarY [E[Z | Y ]]. (1.58)

Proof Lemma 1.

Var[Z] = E[(Z − E[Z])2 = E[(Z − E[Z | Y ] + E[Z | Y ]− E[Z])2]

= EY [E[(Z − E[Z | Y ])2 + (E[Z | Y ]− E[Z])2 | Y ] + 2EY [E[(Z − E[Z | Y ])(E[Z | Y ]− E[Z]) | Y ]]

(1.59)
but the second component is zero being

2(E[Z | Y ]− E[Z]) · E[Z − E[Z | Y ] | Y ] = 0. (1.60)
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1.5. COMPOUND POISSON PROCESSES

Moreover
EY [E[(Z − E[Z | Y ])2 | Y ]] = EY [Var[Z | Y ]] (1.61)

and

EY [E[E[Z | Y ]− E[Z]]2 | Y ] = E[E[Z | Y ]− E[Z]]2 = VarY [E[Z | Y ]] (1.62)

so that Var[Z] = VarY [E[Z | Y ]] + EY [Var[Z | Y ]].
The variance is decomposed in the variance of the conditional mean plus the mean of the conditional
variance.
Applying Lemma 1 to the Theorem 1.5

Var[Z(t)] = VarN [E[Z(t) | N(t)]] + EN [Var[Z(t) | N(t)]] (1.63)

so that VarN [E[Z(t) | N(t)]] = VarN [N(t)E[X]] = E[X]2Var[N(t)],

EN [Var[Z(t) | N(t)]] = EN [N(t)Var[X]] = E[N(t)]Var[X].
(1.64)

We used the property of the conditional expectation EY [E[Z | Y ]] = E[Z].

In particular, if Z = 1A is the indicator function of event A,

EY [Pr{A | Y }] = Pr{A} = E[Z] □ (1.65)

If N(t) is Poisson and the Xj are non-negative i.i.d. r.v.’s with probability distribution function F
we have that the probability generating function of the compound Poisson process is:

E
[
uZ(t)

]
= e−λt+λtE[u

X ] = e−λt
∫∞
0 (1−ux)dF (x). (1.66)

In fact if the r.v.’s Xi are i.i.d. Poisson r.v.’s, then

E
[
uZ(t)

]
= E

[
u
∑N(t)

j=1 Xj

]
= EN

[
E
[
u
∑N(t)

j=1 Xj |N(t)

]]
= EN

[
E
[
uX
]N(t)

]
∞∑
k=0

E
[
uX
]k · pk(t) = ∞∑

k=0

E
[
uX
]k · e−λt (λt)k

k!
= e−λteλt·E[u

X ] = e−λteλt·
∫∞
0 uxdF (x)

= e−λt{1−
∫∞
0 uxdF (x)} = e−λt

∫∞
0 (1−ux)dF (x).

(1.67)

and the result obtains. □

Remark 1.6 . If Xj = Nj(t) the process
∑N(t)

j=1 Nj(t) is called compound Poisson-Poisson. It
represents the Poisson sum of Poisson processes.
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1.5. COMPOUND POISSON PROCESSES

Remark 1.7 . For a portfolio of Q policies the total aggregate claim is Z(t) =
∑Q

q=1

∑Nq(t)
j=1 Xq,j ,

where the Xq,j ’s are i.i.d. Hence mean, variance and p.g.f. are given respectively as

E[Z(t)] =
∑

q E[Nq(t)]E[Xq],
Var[Z(t)] =

∑
q Var[Nq(t)] ·

[
E2(Xq) + Var(Xq)

]
,

E
[
u
∑

q Zq(t)
]
= e−t

∑
q λq+t

∑
q λqEu

Xq
= e−t

∑
q λq(1−EuXq ) = e−t

∑
q λq

∫∞
0 (1−ux)dFq(x).

If to each Poisson event (a car accident) we associate a r.v. Xj (the amount of the damage) it is of
interest to calculate the following probability:

Pr
{
max

(
X1, . . . , XN(t)

)
< b
}

(1.68)

which represents the maximal damage produced by the N(t) events in the interval (0, t).

Note that for N(t) = 0 we assume that max
(
X1, . . . , XN(t)

)
= 0.

The probability (1.68) can be calculated as

Pr
{
max

(
X1, . . . , XN(t)

)
< b
}
= E

[
Pr
{
max

(
X1, . . . , XN(t)

)
< b | N(t)

}]
=

∞∑
k=0

Pr {max (X1, . . . , Xk) < b}Pr{N(t) = k}

=
∞∑
k=0

[Pr(X < b)]ke−λt
(λt)k

k!

= e−λt+λtPr{X<b}.

(1.69)

Note that the distribution function of the random variable max
(
X1, . . . , XN(t)

)
reads

Pr
{
max

(
X1, . . . , XN(t)

)
< b
}
=


0 b < 0

e−λt b = 0

e−λt+λtPr(X<b) b > 0

(1.70)

and shows a jump of height e−λt at b = 0.
In the special case when X is exponentially distributed, that is

Pr(X < b) = µ

∫ b

0
e−µydy = 1− e−µb, (1.71)

for b > 0, the probability distribution (1.70) becomes

Pr
{
max

(
X1, . . . , XN(t)

)
< b
}
=


0 b < 0

e−λt b = 0

e−λte
−µb

b > 0

(1.72)

and is known as the Gumbel or Gnedenko distribution.
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1.6. POISSON RANDOM FIELDS

If we consider the special compound Poisson process

N(δ−α)∑
j=1

Xj 0 < α < 1, δ > 0 (1.73)

where the Xj are positive i.i.d. r.v.’s with distribution

Pr(X > x) =

{
1 x ≤ δ

δαx−α x > δ
(1.74)

and N(δ−α) is a Poisson r.v. with parameter λ = δ−α, δ > 0, we have that, for δ → 0, (1.73) con-
verges in distribution to an α-Stable subordinator Sα(σ, 1, 0) of order 0 < α < 1 with characteristic
function

E
[
eiθSα(σ,1,0)

]
= e−|θ|ασα

(
1− isgn(θ)tg

(π
2
α
))

(1.75)

where σ = {Γ(1− α) cos (π2α)}
1
α .

See the Appendix A for the general expression of the characteristic function of an α-Stable r.v.
Sα(µ, β, σ), when µ ̸= 0, −1 < β < 1.

1.6 Poisson random fields

Points randomly distributed in the Euclidean space Rn can be modelled by means of a multi-index
Poisson process, called Poisson field.
The basic property of the Poisson random fields (cf. Fig. 1.8) is represented by the independency of
the random variables N(SA) and N(SB) for arbitrary disjoint sets SA and SB such that SA∩SB = ∅.
We have that for the Poisson random field of rate λ > 0 we have that

Pr{N(S) = k} =
λk[µ(S)]k

k!
e−λµ(S) k ≥ 0 (1.76)

where µ(S) is the volume of the set S ⊂ Rn andN : Bn → N∪{0} when Bn is the Borel class over Rn.

Remark 1.8 . The volume of a sphere Snr of radius r in Rn is

µ(Snr ) =
∫ r
0 Area(S

n
r )dr,

where ∫ r
0 Area(S

n
1 )ρ

n−1dρ =
∫ r
0

2π
n
2

Γ(n
2
)ρ
n−1dρ = 2π

n
2

Γ(n
2
)

∫ r
0 ρ

n−1dρ = 2π
n
2

Γ(n
2
)
rn

n = π
n
2 rn

Γ(n
2
+1) .
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1.6. POISSON RANDOM FIELDS

Remark 1.8 (cont.). For n = 3,

µ(S3
r ) =

π
3
2 r3

Γ( 3
2
+1)

= 4
3
π

3
2 r3√
π

= 4
3πr

3,

where, according to the properties of the Gamma function, i.e. Γ(z + 1) = z! = zΓ(z), Γ(12) =
√
π,

1 = Γ(2) = Γ(1) = 0!, Γ(−z) = ±∞ ∀z positive integer

Γ(32 + 1) = 3
2Γ(

3
2) =

3
2Γ(

1
2 + 1) = 3

2
1
2Γ(

1
2) =

3
4

√
π,

Moreover

Area(Sn1 ) =
2π

n
2

Γ(n
2
)

where

Snr = 2π
n
2

Γ(n
2
)r
n−1

A proof can be obtained from

∫
· · ·
∫
Rn

e−
x21
2√
2π
... e

−x2n
2√
2π
dx1...dxn = 1

which is a multinormal distribution with independent marginals.
The above integral can be evaluated by means of hyperspheric coordinates as

∫∞
0 Area(Sn1 )r

n−1 e
− r2

2

(2π)
n
2
dr = 1

so that

Area(Sn1 ) =
(2π)

n
2∫∞

0 rn−1e−
r2
2 dr

= (2π)
n
2

2
n
2 −1Γ(n

2
)

being Γ(α) =
∫∞
0 xα−1e−xdx with the change of variable x = r2

2 .

For the distribution of the nearest neighbour in the Poisson random field we have that

Pr{the nearest neighbour to a fixed point with center at x is outside the sphere Sr of radius r}

= Pr{N(Sr) = 0} = e−λµ(Sr).

(1.77)
For example, in R2 and R3 we have that

Pr{N(Sr) = 0} =

e−λπr
2 in R2

e−
4
3
λπr3 in R3

(1.78)

For the planar case R2, the density related to (1.78) reads

f(r) = 2λπre−λπr
2

r > 0 (1.79)
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1.7. THE INTEGRAL OF AN HOMOGENEOUS POISSON PROCESS

which therefore is a Rayleigh distribution. In Rn we have

Pr{N(Sr) = 0} = exp

(
−λ π

n
2 rn

Γ(n2 + 1)

)
. (1.80)

Figure 1.6: A general sample path of a Poisson random field.

1.7 The integral of an homogeneous Poisson process

In this section we study the integral of an homogeneous Poisson process (see [15]):

N (t) =

∫ t

0
N(s)ds =

n∑
j=2

(Tj − Tj−1)(j − 1) + n(t− Tn) (1.81)

where, as in (1.18),

Pr{T1 ∈ dt1, · · · , Tn ∈ dtn | N(t) = n} =
n!dt1 · · · dtn

tn
, with 0 < t1 < t2 < · · · < tn < t. (1.82)

Remark 1.9 . The Tj − Tj−1 are distributed as the difference between order statistics from
Uniform[0, T ] r.v.’s (see [6], cf. also [7]). As an example, the distribution of the difference of
order statistics is of interest in statistical seismology, in which case the difference of order statistics
of magnitudes following a Gutenberg-Richter (i.e., exponential) law is (again) exponential.

It is possible to show that the conditional characteristic function of N (t) reads

E
(
eiβN (t)

∣∣∣N (t) = n
)
=

(eiβt − 1)n

tn(iβ)n
(1.83)
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1.7. THE INTEGRAL OF AN HOMOGENEOUS POISSON PROCESS

while the unconditional characteristic function is

E
(
eiβN (t)

)
= eλ

∫ t
0 (e

iβs−1)ds (1.84)

because

E
[
eiβN (t)

]
= E

[
eiβ

∫ t
0 N(s)ds

]
=

∞∑
n=0

E
[
eiβ

∫ t
0 N(s)ds | N(t) = n

]
· Pr{N(t) = n}

=

∞∑
n=0

(eiβt − 1)n

tn(iβ)n
e−λt

(λt)n

n!
= e−λt

∞∑
n=0

[
λ(eiβt − 1)

]n
(iβ)nn!

= e−λte
λ(eiβt−1)

iβ = e−λteλ
∫ t
0 e

iβsds = eλ
∫ t
0 (e

iβs−1)ds.

(1.85)

For small values of t the following approximation holds:

E
(
eiβN (t)

)
= eiλβ

t2

2
−λβ2 t3

6
+o(t3) (1.86)

This implies that, for small value of t, the area below an homogeneous Poisson process is distributed
as a normal with mean E[N (t)] = λt2

2 and variance Var[N (t)] = λt3

3 , since the c.f. of a Normal

distribution N(µ, σ2) is E
[
e−iβN(µ,σ2)

]
= eiβµ−β

2 σ2

2 .
Moreover

(i) the relationship

E
{∫ t

0
Nk(s)ds

∣∣∣∣N(t) = n

}
=

t

n+ 1

n∑
j=1

jk =


nt
2 k = 1

n(2n+1)t
6 k = 2

n2(n+1)t
4 k = 3

(1.87)

holds, where we applied the following formulas∑n
j=1 j = n(n+1)

2∑n
j=1 j

2 = n(n+1)(2n+1)
6∑n

j=1 j
3 =

(
n(n+1)

2

)2
=
(∑n

j=1 j
)2

;

(1.88)

(ii) by conditioning out (1.87) we easily have the unconditional values

E
{∫ t

0
N(s)kds

}
=


λt2

2 k = 1
λ2t3

3 + λt2

2 k = 2
λ3t4

4 + λ2t3 + λt2

2 k = 3

(1.89)

For the second order moment of (1.81) we have the following results

E
{(∫∞

0 N(s)ds
)2∣∣∣N(t) = n

}
= n(3n+1)t2

12

Var
{(∫∞

0 N(s)ds
)2∣∣∣N(t) = n

}
= nt2

12

(1.90)
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1.8. ITERATED POISSON: COMPOSITION OF TWO INDEPENDENT POISSON
PROCESSES

as stated in [15]. From (1.89) we extract the variance of the integral of the Poisson process

Var
(∫ t

0 N(s)ds
)

= E
(
Var

∫ t
0 N(s)ds|N(t)

)
+ Var

(
E
∫ t
0 N(s)ds|N(t)

)
= λt3

3 . (1.91)

1.8 Iterated Poisson: composition of two independent Poisson pro-
cesses

We now study the composition of two independent Poisson processes Nα and Nβ of rates λα and
λβ (for details see [13]). The process (iterated Poisson)

M(t) ≡ Nα (Nβ(t)) (1.92)

is a Poisson process sampled at the random time Nβ(t). Thus M(t) can be regarded as a time
changed Poisson process and is a process with jumps of integer-valued random size.
The following relationship between the iterated Poisson M(t) and a special compound Poisson
process (compound Poisson-Poisson) holds:

Nα (Nβ(t))
D∼
Nβ(t)∑
j=1

Nj (1.93)

where the Nj are i.i.d. Poisson distributed random variables with parameter λα.
Theorem 1.6: The iterated process M(t) has distribution:

Pr {M(t) = k} =
λkα
k!
e−λβt(1−e

−λα )Bk

(
e−λαλβt

)
︸ ︷︷ ︸
Bell polynomials

(1.94)

where the Bell polynomials4 are defined as Bk(x) = e−x
+∞∑
r=0

rkxr

r! .

Proof. In fact

Pr{M(t) = k} = E[Pr{Nα(Nβ(t)) = k | Nβ(t)}] =
∞∑
h=0

Pr{Nα(h) = k}Pr{Nβ(t) = h}︸ ︷︷ ︸
joint distribution

=

∞∑
h=0

e−λαh
(λαh)

k

k!
e−λβt

(λβt)
h

h!
= e−λβt

λkα
k!

∞∑
h=0

e−λαhhk
(λβt)

h

h!
= e−λβt

λkα
k!

∞∑
h=0

hk
(e−λαλβt)

h

h!

= e−λβt
λkα
k!
ee

−λαλβt e−e
−λαλβt

∞∑
h=0

hk
(e−λαλβt)

h

h!︸ ︷︷ ︸
Bell polynomials Bk(e−λαλβt)

=
λkα
k!
e−λβt(1−e

−λα )Bk(e
−λαλβt)

(1.95)

4They are also known as Touchard polynomials or exponential Bell polynomials. They represent the moments of
the Poisson distribution, i.e. Bk(λ) =

∑∞
n=0 n

k · e−λ λn

n!
, where λ is the intensity of the Poisson r.v. In R one can

refer to the function eBellPol of the package kStatistics.
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Note further that this iterated Poisson process can count the total number of claims arising from
a Poisson number of cars Nβ having each a Poisson number of accidents Nj . It can be also noted
that we can define a compound Poisson-Binomial model,

∑Nβ(t)
j=1 Bj(p) counting the total number

of fatal crashes arising from a Poisson number of accidents Nβ , where a Bernoulli variable Bj(p)
takes value 1 if the accident is fatal and zero if not.
Theorem 1.7: The mean and variance of M(t) are

E[M(t)] = λαλβt

Var[M(t)] = λα(λα + 1)λβt > E[M(t)]
(1.96)

Proof. From the definition

E[M(t)] = E[Nα(Nβ(t))] = ENβ
[E[Nα(Nβ(t)) | Nβ(t)]] = E[λαNβ(t)] = λαλβt

= Var[M(t)] = E[M2(t)]− E2[M(t)]
(1.97)

and

E[M2(t)] = E
[
N2
α(Nβ(t))

]
= ENβ

[E[N2
α(Nβ(t)) | Nβ(t)]]

=
∞∑
h=0

E
[
N2
α(h)

]
Pr{Nβ(t) = h} =

∞∑
h=0

[
λ2αh

2 + λαh
]
e−λβt

(λβt)
h

h!

= λ2α

∞∑
h=0

h2e−λβt
(λβt)

h

h!
+ λα

∞∑
h=0

he−λβt
(λβt)

h

h!

= λ2α
[
λ2βt

2 + λβt
]
+ λαλβt

(1.98)

and
Var[M(t)] = λ2αλ

2
βt

2 + λ2αλβt+ λαλβt− λ2αλ
2
βt

2

= λαλβt(λα + 1)
(1.99)

□

It is interesting to note that the iterated Poisson process is overdispersed having the variance greater
than the mean.
For the iterated Poisson process the distribution of the first passage time through a level k, which
is defined as

T
(α,β)
k = inf{s > 0 : M(t) = Nα(Nβ(t)) = k}, k ≥ 1 (1.100)

is of great interest. In [10] the authors derive the distribution of the hitting time Tk as follows:

Pr{T (α,β)
k ∈ ds}

= e−λα
λkα
k!
λβe

−λβsds

∞∑
j=0

e−λαj [(j + 1)k − jk]
(λβs)

j

j!
, s > 0.

(1.101)

The distribution of Tk reads (cf. Fig. 1.7)

Pr (Tk ∈ ds) = dsλβe
−λαe−λβs λ

k
α
k!

∑∞
j=0 e

−λαj
[
(j + 1)k − jk

] (λβs)
j

j! s > 0. (1.102)
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For the hitting probabilities Pr (Tk <∞) we have that

Pr (Tk <∞) = e−λα λ
k
α
k!

∑∞
j=0 e

−λαj
[
(j + 1)k − jk

]
< 1 ∀k (1.103)

and, in particular,
Pr (T1 <∞) = λαe−λα

1−e−λα
< 1. (1.104)

It means that there is a positive probability of never reaching level k for the iterated Poisson process.

Figure 1.7: Iterated Poisson process: Probability mass function of the hitting time at time t = 1 against
various levels k of upcrossing and λα = λβ = 1.
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Chapter 2

Birth processes

2.1 The nonlinear case

In order to describe the population dynamics, an effective model based on the assumption that the
probability of new offsprings depends on the current size of the population, is now presented. We
assume also, for the sake of simplicity, that at time t = 0 there is only one progenitor.
Let N (t), t > 0, be the size population at time t; its probabilistic evolution is governed by the
following rules (k ≥ 1) :

1. Pr{N (0) = 1}=1;

2. Pr{N (t, t+ dt] = 1 | N (t) = k} = λkdt+ o(dt);

3. Pr{N (t, t+ dt] = 0 | N (t) = k} = 1− λkdt+ o(dt);

4. Pr{N (t, t+ dt] > 1 | N (t) = k} = o(dt),

where λk > 0 are the time-independent birth-rates.

Remark 2.1 A more general birth process is obtained by assuming that the birth rates are time
dependent, i.e. λk = λk(t).

Remark 2.2 Note that if λk = λ ∀k the increments are independent and the process is a homoge-
neous Poisson process. Note also that this birth process cannot model the population dynamics of
male/female type, because here there is essentially a single "sex" generating by parthenogenesis.

Note that the independence of increments, in this case, is no longer holding (cf. Fig. 2.1).
The state probabilities are:

pk(t) = Pr {N (t) = k | N (0) = 1} , (2.1)

satisfy the difference-differential equation

d

dt
pk(t) = −λkpk(t) + λk−1pk−1(t) t > 0 (2.2)
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2.1. THE NONLINEAR CASE

with initial conditions

pk(0) =

1 k = 1

0 k ≥ 2
(2.3)

The solution of (2.2)-(2.3) is carried out by means of a recursive procedure.
If k = 1, the solution of  d

dtp1(t) = −λ1p1(t),

p1(0) = 1,
(2.4)

is p1(t) = e−λ1t.
To obtain p2(t), it is necessary to solve the non-homogeneous linear equation d

dtp2(t) = −λ2p2(t) + λ1e
−λ1t,

p2(0) = 0,
(2.5)

that provides

p2(t) = e−λ2t
{∫ t

0
λ1e

−λ1seλ2s
}

= λ1e
−λ2t

[
e(λ2−λ1)s

λ2 − λ1

∣∣∣∣∣
s=t

s=0

]
= λ1

[
e−λ1t

λ2 − λ1
+

e−λ2t

λ1 − λ2

]
. (2.6)

In order to understand how the distribution pk(t) emerges, we consider the case k = 3 that is
d
dtp3(t) = −λ3p3(t) + λ2λ1

[
e−λ1t

λ2−λ1 + e−λ2t

λ1−λ2

]
,

p3(0) = 0.
(2.7)

By proceeding as for (2.5) we have that

p3(t) = e−λ3t
[∫ t

0
λ2λ1

(
e−λ1s

λ2 − λ1
+

e−λ2s

λ1 − λ2

)
eλ3sds

]
= e−λ3tλ1λ2

[
e(λ3−λ1)t − 1

(λ3 − λ1)(λ2 − λ1)
+

e(λ3−λ2)t − 1

(λ1 − λ2)(λ3 − λ2)

]

= λ1λ2

[
e−λ1t

(λ3 − λ1)(λ2 − λ1)
+

e−λ2t

(λ1 − λ2)(λ3 − λ2)
− e−λ3t

λ2 − λ1

(
1

λ3 − λ1
− 1

λ3 − λ2

)]
= λ1λ2

[
e−λ1t

(λ3 − λ1)(λ2 − λ1)
+

e−λ2t

(λ1 − λ2)(λ3 − λ2)
+

e−λ3t

(λ1 − λ3)(λ2 − λ3)

]
=

2∏
j=1

λj

[
3∑

m=1

e−λmt∏3
l=1,l ̸=m(λl − λm)

]
(2.8)

Formula (2.8) suggests that the general expression for the probabilities pk(t) has the form

pk(t) =


∏k−1
j=1 λj

∑k
m=1

e−λmt∏k
l=1,l ̸=m(λl−λm)

, k > 1,

e−λ1t, k = 1.
(2.9)
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Proceeding by induction, we must solve the following Cauchy problem
d
dtpk(t) = −λkpk(t) + λk−1

∏k−2
j=1 λj

∑k−1
m=1

e−λmt∏k
l=1,l ̸=m(λl−λm)

, k > 1,

pk(0) = 0.
(2.10)

The solution to (2.10) is obtained by applying the formula for the solution of first-order linear
non-homogeneous equations1 which yields:

pk(t) = e−λkt

∫ t

0

k−1∏
j=1

λj

k−1∑
m=1

e−λms∏k
l=1,l ̸=m(λl − λm)

eλksds


= e−λkt

k−1∏
j=1

λj

k−1∑
m=1

e(λk−λm)t − 1∏k
l=1,l ̸=m(λl − λm)(λk − λm)


=

k−1∏
j=1

λj

[
k−1∑
m=1

e−λmt∏k
l=1,l ̸=m(λl − λm)

− e−λkt
k−1∑
m=1

1∏k
l=1,l ̸=m(λl − λm)

]

=
k−1∏
j=1

λj

[
k∑

m=1

e−λmt∏k
l=1,l ̸=m(λl − λm)

]
,

(2.11)

since2

−
k−1∑
m=1

1∏k
l=1,l ̸=m(λl − λm)

=
1∏k

l=1,l ̸=k(λl − λk)
(2.12)

In order to retrieve p3(t) of formula (2.8) set k = 3 in (2.9).
Equation (2.2) can also be solved by applying the Laplace transform∫ ∞

0
e−µtpk(t)dt = {Lpk} (µ), (2.13)

which provides the relationship (from (2.10))

{Lpk} (µ) =
λk−1

µ+ λk
{Lpk−1} (µ) =

k−1∏
j=1

λj

k∏
j=1

1

µ+ λj
. (2.14)

By evaluating the Laplace transform of (2.9) and by comparing the result obtained with (2.14) we
have that

k∏
j=1

1

µ+ λj
=

k∑
m=1

1∏k
l=1,l ̸=m(λl − λm)

1

µ+ λm
. (2.15)

Remark 2.3 If
∑

m=1
1
λm

= ∞ then Pr{N (t) <∞} = 1, so that the size population cannot explode
in a finite time. This means that the birth rates must increase slowly so that the sequence 1/λm,
m ≥ 1, forms a divergent series.

1It is trivial to note that the terms correspond to the form y′(t) + a(t) = b(t), where, for all k > 1, a(t) ≡ λk and
b(t) ≡ λk−1

∏k−2
j=1 λj

∑k−1
m=1

e−λm∏k
l=1,l̸=m

(λl−λm)
.

2The result obtains after application of the Laplace expansion for determinants.
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Theorem 2.1: The time between the k-th and (k + 1)-th birth has distribution

Pr{Tk ∈ ds} = λke
−λksds, s > 0. (2.16)

Let Zk = T1 + · · ·+ Tk the waiting time for k-th birth. We have the following relation:

Pr{T1 + · · ·+ Tk ∈ dt} =

∫ t

0
Pr{T1 + · · ·+ Tk−1 ∈ ds}Pr{Tk ∈ d(t− s)}, (2.17)

where

Pr{T1 + · · ·+ Tk−1 ∈ ds}/ds = d

ds
Pr{N (s) ≥ k}. (2.18)

Consider that N includes also the progenitor3.
By applying the Laplace transform to both members of (2.17), we have that∫ ∞

0
e−µtPr{T1 + · · ·+ Tk ∈ dt}

=

∫ ∞

0
e−µtdt

∫ t

0
Pr{Tk ∈ d(t− s)}Pr{T1 + · · ·+ Tk−1 ∈ ds}

=

∫ ∞

0
Pr{T1 + · · ·+ Tk−1 ∈ ds}

∫ ∞

s
e−µtPr{Tk ∈ d(t− s)}

=

∫ ∞

0
e−µsPr{T1 + · · ·+ Tk−1 ∈ ds}

∫ ∞

0
e−µyPr{Tk ∈ dy}

=
k∏
j=1

∫ ∞

0
e−µsPr{Tj ∈ ds} =

k∏
j=1

λj
µ+ λj

.

(2.19)

Each factor in (2.19) is the Laplace transform of (2.11).
Furthermore

Pr{T1 < s} = Pr{N(s) ≥ 2} (2.20)

and taking the derivative

Pr{T1 ∈ ds}
ds

=
d

ds
Pr{N(s) ≥ 2}=

d

ds
(1− Pr{N(s) = 1})= d

ds
(1− e−λ1s) = λ1e

−λ1s (2.21)

and
Pr{T1 + T2 < s} = Pr{N(s) ≥ 3} = 1− Pr{N(s) = 1} − Pr{N(s) = 2} (2.22)

and deriving:

Pr{T1 + T2 ∈ ds}/ds = d

ds
{1− Pr{N(s) = 1} − Pr{N(s) = 2}}

= λ1e
−λ1s + λ1

[
λ1

e−λ1s

λ2 − λ1
+ λ2

e−λ2s

λ1 − λ2

]
=

λ1λ2
λ2 − λ1

(
e−λ1s − e−λ2s

)
.

(2.23)

3i.e., k includes one progenitor and k − 1 offsprings.
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Note that (2.19), for k = 2, becomes∫ ∞

0
e−µtPr{T1 + T2 ∈ dt} =

λ1λ2
(λ1 + µ)(λ2 + µ)

, (2.24)

and corresponds to the Laplace transform of (2.23).

Figure 2.1: A general sample path of a birth processes.

2.2 Linear case (Yule-Furry)

In this section we denote with N̂(t), t > 0, the size of the population at time t of a linear birth
process (called also Yule–Furry process). In this case the birth rates become λk = λk, con λ > 0.
The distribution (2.9) becomes relatively simple. By observing that

k∏
l=1,l ̸=m

(lλ−mλ) =

= λk−1 [(1−m)(2−m) . . . (m− 1−m)(m+ 1−m) . . . (k −m)]

= λk−1(−1)m−1(m− 1)!(k −m)! ,

(2.25)
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formula (2.9) can be rewritten as

pk(t) = λk−1(k − 1)!
k∑

m=1

e−λmt

λk−1(m− 1)!(k −m)!
(−1)m−1

=

k∑
m=1

e−λmt(−1)m−1 (k − 1)!

(m− 1)!(k −m)!
=

k−1∑
m=0

e−λt(m+1)(−1)m
(k − 1)!

m!(k −m− 1)!

= e−λt
k−1∑
m=0

(
k − 1

m

)
(−1)me−λtm = e−λt

(
1− e−λt

)k−1
, k ≥ 1,

(2.26)

which is a geometric distribution (cf. Fig. 2.2).

Remark 2.4 Note that if the progenitors are n0 > 1 the random number N̂(t) of components of
the population becomes a Negative Binomial distribution (the sum of n0 independent Geometric
r.v.’s):

pk(t) =
(
k−1
k−n0

)
e−λtn0(1− e−λt)k−n0 , k ≥ n0,

(cf. Fig. 2.3 and Fig. 2.4).

Figure 2.2: State probabilities {pk(t), k ≥ 1} of a pure birth process (linear case), with one progenitor
(n0 = 1) and λ = 1; t = 1.

The probabilities (2.26) can be obtained directly by solving the following equations, recursively

d

dt
pk(t) = −λkpk(t) + λ(k − 1)pk−1(t) (2.27)
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2.2. LINEAR CASE (YULE-FURRY)

Figure 2.3: State probabilities {pk(t), k ≥ 1} of a pure birth process (linear case), for n0 = 2 progenitors
(Negative Binomial) and λ = 1; t = 1.

Figure 2.4: State probabilities {pk(t), k ≥ 1} of a pure birth process (linear case), n0 = 10 progenitors
(Negative Binomial) and λ = 1; t = 1.

with initial conditions

pk(0) =

1, k = 1,

0, k ≥ 2.
(2.28)

30



2.2. LINEAR CASE (YULE-FURRY)

By using the probability generating function

G(u, t) =

∞∑
k=1

ukpk(t), |u| ≤ 1 (2.29)

we can pass from (2.27) to the following partial differential equation

∂

∂t
G(u, t) = λu(u− 1)

∂

∂u
G(u, t) (2.30)

with initial condition G(u, 0) = u.
The general solution of (2.30) is

G(u, t) = f

(
e−λt

u

1− u

)
(2.31)

where f ∈ C1 is a differentiable function. The initial condition permits us to obtain the explicit
form of f because

G(u, 0) = u = f

(
u

1− u

)
(2.32)

and by setting u
1−u = v we see that f(v) = v

1+v . From (2.31) we then have that

G(u, t) =
e−λt u

1−u
1 + u

1−ue
−λt =

ue−λt

1− u (1− e−λt)

= ue−λt
∞∑
k=0

uk
(
1− e−λt

)k
=

∞∑
k=1

uke−λt
(
1− e−λt

)k−1

(2.33)

and this confirms (2.26).
From the probability generating function, by means of straightforward calculation, we can obtain
that

E[N̂(t)] = eλt

Var[N̂(t)] = eλt
(
eλt − 1

)
.

(2.34)

Thus a linear birth process has mean and variance increasing exponentially and since

∞∑
k=1

1

λk
= ∞ (2.35)

Pr{N̂(t) <∞} = 1 for t > 0, that is the Yule–Furry process does not explode.
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Chapter 3

Death processes

3.1 The nonlinear case

We consider a population with n0 elements at time t = 0. Let M(t) be the number of elements of
the population at time t > 0 and we denote by M(t, t + dt] the r.v. representing the decrease of
the population in the time interval (t, t+ dt].
We suppose that the population can only decrease according to the following probabilistic rules

1. Pr{M(t) = n0} = 1;

2. Pr{M(t, t+ dt] = −1 | M(t) = k} = µkdt+ o(dt), µk > 0;

3. Pr{M(t, t+ dt] = 0 | M(t) = k} = 1− µkdt+ o(dt);

4. Pr{M(t, t+ dt] < −1 | M(t) = k} = o(dt),

The last property excludes simultaneous deaths.
The distribution

pk(t) = Pr{M(t) = k | M(0) = n0} (3.1)

is obtained by the solving the following difference-differential equations
d
dtpk(t) = −µkpk(t) + µk+1pk+1(t), 1 ≤ k < n0,

d
dtpn0(t) = −µn0pn0(t), k = n0,

d
dtp0(t) = µ1p1(t), k = 0.

(3.2)

The equations (3.2) are obtained by considering that the probability that at time t + dt there are
k survivors is the probability that at time t either there are k survivors and in (t, t+ dt] no death
is recorded or there are k + 1 survivors and one of them disappears during the same time interval,
i.e.

pk(t+ dt) = pk(t)(1− µkdt) + pk+1(t)µk+1dt+ o(dt). (3.3)

The second of equations (3.2) comes from

pn0(t+ dt) = pn0(t)(1− µn0dt) + o(dt) (3.4)
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3.1. THE NONLINEAR CASE

and the last of equations (3.2) comes from

p0(t+ dt) = p0(t) + p1(t)µ1dt+ o(dt). (3.5)

A relevant feature for the death process is the extinction probability p0(t). Note that the second
and third of equations (3.2) are obtained from the first one for k = n0 and k = 0, respectively.
The second equation of (3.2) comes from the first one with µn0+1 = 0 because the population cannot
increase in a pure death process.

Theorem 3.1: The probability distribution emerging from (3.2), has the form

pk(t) =


e−µn0 t, k = n0,∏n0
j=k+1 µj

∑n0
m=k

e−µmt∏n0
h=k,h̸=m(µh−µm)

, 1 ≤ k < n0,

1−
∑n0

m=1

∏n0
h=1,h̸=m

( µh
µh−µm

)
e−µmt, k = 0.

(3.6)

Proof. The first result is straightforward. As far as the second probability of (3.6) is concerned
we restrict ourselves to some specific cases. Equation (3.2), for k = n0 − 1 becomes

d

dt
pn0−1(t) =

= −µn0−1pn0−1(t) + µn0pn0(t)

= −µn0−1pn0−1(t) + µn0e
−µn0 t,

(3.7)

and its solution is

pn0−1(t) =

= e−tµn0−1

{∫ t

0
µn0e

−sµn0esµn0−1 + cost
}

= µn0e
−tµn0−1

{
1− e−(µn0−µn0−1)t

µn0 − µn0−1

}

= µn0

[
e−tµn0−1

µn0 − µn0−1
+

e−tµn0

µn0−1 − µn0

]
,

(3.8)

and is equal to (3.6) for k = n0 − 1.
The recursion method permits us to write

d

dt
pn0−2(t) = −µn0−2pn0−2(t) + µn0−1µn0

[
e−tµn0−1

µn0 − µn0−1
+

e−tµn0

µn0−1 − µn0

]
, (3.9)

with initial condition pn0−2(0) = 0.
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3.2. THE LINEAR CASE

The solution of (3.9) reads

pn0−2(t) = e−tµn0−2

{∫ t

0
µn0−1µn0

[
e−sµn0−1

µn0 − µn0−1
+

e−sµn0

µn0−1 − µn0

]
esµn0−2ds

}
= µn0µn0−1e

−tµn0−2

{
1− e−(µn0−1−µn0−2)t

(µn0 − µn0−1)(µn0−1 − µn0−2)
− 1− e−(µn0−µn0−2)t

(µn0 − µn0−1)(µn0 − µn0−2)

}

= µn0µn0−1

[
e−tµn0−2

(µn0 − µn0−1)(µn0−1 − µn0−2)
− e−tµn0−2

(µn0 − µn0−1)(µn0 − µn0−2)

+
e−tµn0−1

(µn0 − µn0−1)(µn0−2 − µn0−1)
+

e−tµn0

(µn0−1 − µn0)(µn0−2 − µn0)

]
= µn0µn0−1

[
e−tµn0

(µn0−1 − µn0)(µn0−2 − µn0)
+

e−tµn0−1

(µn0 − µn0−1)(µn0−2 − µn0−1)

+
e−tµn0−2

(µn0 − µn0−2)(µn0−1 − µn0−2)

]
.

(3.10)
Note that (3.6) for k = n0 − 2 is equal to (3.10). The general case can obtained in a similar way
but the details are omitted (see [17]).

3.2 The linear case

The special case of the linear death process is retrieved for µk = kµ, so the mortality rate is
proportional to the current size of the population.
By observing that

n0∏
h=k,h̸=m

(µh − µm) = (µk − µm) . . . (µm−1 − µm)(µm+1 − µm) . . . (µn0 − µm)

= (k −m)µ . . . (−1)µ · 1 · µ . . . (n0 −m)µ

= (−1)m−kµm−k(m− k)!µn0−m(n0 −m)!

= (−1)m−kµn0−k(m− k)!(n0 −m)!

(3.11)

and that
n0∏

h=k+1

µh = µn0−kn0(n0 − 1) . . . (n0 − k − 1)
h!

k!
= µn0−kn0!

k!
, (3.12)

formula (3.6) entails that

pk(t) =
n0!

k!

n0∑
m=k

e−µmt(−1)m−k

(m− k)!(n0 −m)!

=

(
n0
k

) n0∑
m=k

(
n0 − k

m− k

)
(−1)m−ke−µmt

=

(
n0
k

) n0−k∑
r=0

(
n0 − k

r

)
(−1)re−µ(k+r)t

=

(
n0
k

)
e−µkt

(
1− e−µt

)n0−k , 0 ≤ k ≤ n0

(3.13)
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3.3. THE SUBLINEAR CASE

so the distribution of the linear death process is Binomial (cf. Fig. 3.1) with parameters n0 and
e−µt (see [17]).

Figure 3.1: State probabilities {pk(t), k ≥ 1} of a pure-death process (linear case) with initial population
size n0 = 100, after t = 1 time unit (µ = 0.1). Binomial(n0, e−µt).

3.3 The sublinear case

As shown in [17], in this case the infinitesimal death probabilities have the form

Pr{M(t, t+ dt) = −1 | M(t) = k} = µ(n0 + 1− k)dt+ o(dt) (3.14)

where the death rate does not depend on the the number k of survivors, but on the number n0−(k−1)

of deaths occurred in the time interval (0, t), so that for k = n0 the probability (3.14) reduces to is
µdt+ o(dt).
The difference-differential equations governing the survival probabilities pk(t) are

d

dt
pk(t) = −µ(n0 − k + 1)pk(t) + µ(n0 − k)pk+1(t) (3.15)

subject to  d
dtpn0(t) = −µpn0(t)

d
dtp0(t) = µn0p1(t)

(3.16)

and
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3.3. THE SUBLINEAR CASE

pk(0) =

1 k = n0

0 0 ≤ k < n0
(3.17)

with solution given in [17]

pk(t) =

n0−k∑
h=0

(
n0 − k

h

)
(−1)he−(h+1)µt 1 ≤ k ≤ n0 (3.18)

and extinction probability

p0(t) =

n0∑
h=0

(
n0
h

)
(−1)he−hµt. (3.19)
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Chapter 4

The birth-death process

4.1 The nonlinear case

We consider a process where birth and death are admitted so that the population N (t) can increase
and decrease as time passes. We assume that

Pr{(N (t, t+ dt) = 1 | N (t) = k} = λkdt+ o(dt)

Pr{(N (t, t+ dt) = −1 | N (t) = k} = µkdt+ o(dt)

Pr{(N (t, t+ dt) = 0 | N (t) = k} = 1− (λk + µk)dt+ o(dt)

(4.1)

where µk and λk are the death and birth rates.
Furthermore we assume also that

Pr{N (t, t+ dt) = ±k | N (t) = k} = o(dt), k ≥ 2 (4.2)

i.e., we suppose that clusters of deaths and births occur with a negligible probability. The state
probabilities

pk(t) = Pr{N (t) = k | N (0) = 1}, k ≥ 0 (4.3)

solve the system of equations

dpk(t)

dt
= −(λk + µk)pk(t) + λk−1pk−1(t) + µk+1pk+1(t), k ≥ 0 (4.4)

under initial conditions

pk(0) =

1 k = 1 (one initial progenitor)

0 k ̸= 1.
(4.5)
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4.2. THE LINEAR CASE

Equation (4.4) can be obtained in the following manner:

pk(t+ dt) =

= pk(t)(1− λkdt)(1− µkdt) + pk−1(t)λk−1dt(1− µk−1dt)

+ pk+1(t)(1− λk+1dt)µk+1dt+ pk(t)λkdtµkdt

= pk(t)− λkpk(t)dt− µkpk(t)dt+ pk−1(t)λk−1dt+ pk+1(t)µk+1dt

(4.6)

By expanding pk(t+ dt), dividing both members by dt we get (4.4).

Remark 4.1. If the Poisson rates are constant, λk = λ, µk = µ, the birth-death process becomes
the immigration-emigration process.

4.2 The linear case

In the linear case we obtain:

dpk(t)

dt
= −(λ+ µ)kpk(t) + λ(k − 1)pk−1(t) + µ(k + 1)pk+1(t), (4.7)

The exact distribution (see [12]1) pk(t) = Pr{N (t) = k}, k ≥ 1 is (cf. Fig. 4.1)

pk(t) = (λ− µ)2e−(λ−µ)t [λ(1− e−(λ−µ)t)]k−1

(λ− µe−(λ−µ)t)k+1
, k ≥ 1, µ ̸= λ, (4.8)

which for λ = µ simplifies into (cf. Fig. 4.3)

pk(t) =
(λt)k−1

(1 + λt)k+1
, k ≥ 1 (4.9)

The extinction probabilities are

p0(t) =


µt

1+µt λ = µ

µ−µe−(λ−µ)t

λ−µe−(λ−µ)t λ ̸= µ
(4.10)

The probability generating function G(u, t) = E[uN (t)] of N (t) satisfies in the linear case the partial
differential equation

∂G(u, t)

∂t
=
[
λu2 − (λ+ µ)u+ µ

] ∂G(u, t)
∂u

= (λu− µ)(u− 1)
∂G(u, t)

∂u
, |u| ≤ 1, t > 0 (4.11)

with the initial condition G(u, 0) = u (with a single progenitor at time t = 0).
The general form of the solution of equation (4.11) is

G(u, t) = f

(
e−(λ−µ)tλu− µ

1− u

)
(4.12)

and this can be checked by substituting equation (4.12) into equation (4.11) and assuming that
f ∈ C1. The argument of equation (4.12) is obtained by the method of auxiliary functions. By

1Cf. also Bailey (1964) [1].
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4.2. THE LINEAR CASE

Figure 4.1: Extinction probabilities p0(t) for (a) λ = 1, µ = 0.2, (b) λ = 0.5, µ = 0.2, (c) λ = 0.25, µ = 0.2.

Figure 4.2: Distribution {pk(t), k ≥ 1}, for λ = µ = 0.75; t = 1.

imposing the initial condition

G(u, 0) =

∞∑
k=0

ukpk(0) = u = f

(
λu− µ

1− u

)
(4.13)
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4.3. THE EXTINCTION PROBABILITY AND THE RICCATI EQUATION

Figure 4.3: Extinction probabilities p0(t), for λ = 1, λ = 0.75 and λ = 0.5.

we obtain that
f(u) =

µ+ u

λ+ u
(4.14)

because if we set λu−µ
1−u = v, we readily arrive at (4.14).

The p.g.f. for λ ̸= µ is therefore

G(u, t) =


µ+λu−µ

1−u
e−(λ−µ)t

λ+λu−µ
1−u

e−(λ−µ)t
= µ(1−u)+(λu−µ)e−(λ−µ)t

λ(1−u)+(λu−µ)e−(λ−µ)t u > 0

p0(t) =
µ−µe−(λ−µ)t

λ−µe−(λ−µ)t , u = 0
(4.15)

The limit of the extinction probability (4.15) for λ→ µ reads (cf. Fig. 4.2)

lim
λ→µ

µ− µe−(λ−µ)t

λ− µe−(λ−µ)t =
µt

1 + µt
. (4.16)

4.3 The extinction probability and the Riccati equation

The equation governing the extinction probability is

p0(t) =

∫ t

0
e−λsµe−µsds+

∫ t

0
λe−λse−µsp20(t− s)ds. (4.17)

Equation (4.17) is obtained by considering that∫ t

0
e−λsµe−µsds (4.18)

represents the probability that in (0, s) the initial particle will survive up to time s with probability
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4.3. THE EXTINCTION PROBABILITY AND THE RICCATI EQUATION

e−µs(and no offspring was born, with probability e−λs), and that it will die during [s, s+ ds) with
probability µds.
The second term of (4.17) considers that the initial progenitor with probability e−µs survives up
to time s (and no birth is registered in (0, s) with probability e−λs), an additional offspring is
generated in [s, s+ ds) with probability λds and both components of the population will die during
the remaining time [s, t], independently, with probability p20(t− s).
Hence, by deriving with respect to t, we obtain

p′0(t) = µe−(λ+µ)t + λe−(λ+µ)tp20(0) + λ

∫ t

0
e−(λ+µ)s d

dt
p20(t− s)ds (4.19)

Equation (4.19) is then simplified as follows:

p′0(t) = µe−(λ+µ)t + λe−(λ+µ)tp20(0)− λ

∫ t

0
e−(λ+µ)s d

ds
p20(t− s)ds

= µe−(λ+µ)t − λe−(λ+µ)sp20(t− s)|s=ts=0 − λ(λ+ µ)

∫ t

0
e−(λ+µ)sp20(t− s)ds

= µe−(λ+µ)t + λp20(t)− (λ+ µ)

[
p0(t)− µ

∫ t

0
e−(λ+µ)sds

]
= −(λ+ µ)p0(t) + λp20(t) + µe−(λ+µ)t + [−µe−(λ+µ)s]s=ts=0

= µ− (λ+ µ)p0(t) + λp20(t).

(4.20)

Hence the extinction probability p0(t), t > 0, satisfies the non-homogeneous Riccati equation

dp0(t)

dt
+ (λ+ µ)p0(t) = λp20(t) + µ (4.21)

An alternative derivation is the following.
By considering the process in the initial interval [0, ds) and writing

p0(t) = µds+ (1− µds)(1− λds)p0(t− ds) + (1− µds)λdsp20(t− ds), (4.22)

we are supposing that

• 1. the process becomes extincted in the initial interval [0, ds) with probability µds;

• 2. the process survives and does not generate an additional offspring in the initial interval ds,
and gets extincted in the interval [ds, t) with probability

(1− µds)(1− λds)p0(t− ds); (4.23)

• 3. the process generates an additional component with probability λds and in the remaining
time [ds, t) the two components (independently) disappear .

Neglecting infinitesimal of higher order we have that

p0(t)− p0(t− ds)

ds
= µ− (λ+ µ)p0(t− ds) + λp20(t− ds) (4.24)

41



4.3. THE EXTINCTION PROBABILITY AND THE RICCATI EQUATION

and for ds → 0 the Riccati equation emerges and is satisfied by the extinction probability (4.10)
above.
Functions (4.15) and (4.16) are solutions of the Riccati equation of the next section.
For λ = µ we have that

d

dt
p0(t) + 2µp0(t) = µp20(t) + µ (4.25)

is satisfied by (4.16).
Finally we observe that

lim
t→∞

p0(t) =


µ
λ , λ > µ

1, λ = µ

1, λ < µ

(4.26)

according to intuition.
Note that he extinction is certain if λ ≤ µ and it is still possible if λ > µ.
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Chapter 5

Fractional extensions of the Poisson
process

5.1 The space-fractional Poisson process: standard case

It is well-known that the state probabilities of the homogeneous Poisson process satisfy the equations

dpk(t)

dt
= −λpk(t) + λpk−1(t) = −λ(I −B)pk(t) (5.1)

where Ipk = pk and Bpk = pk−1 where B is the "shift" operator.
The space-fractional Poisson process is defined by considering that the state probabilities (see [14])
satisfy

dpk(t)

dt
= −{λ(I −B)}αpk(t), 0 < α < 1 k ≥ 0 (5.2)

so that we arrive at the so-called space-fractional Poisson process, denoted as Nα(t), t > 0.
Equation (5.2) can be rewritten by expanding the operator (I −B)α in binomial series, because

(1− x)α =
∞∑
h=0

Γ(α+ 1)

h!Γ(α+ 1− h)
(−x)h1α−h, |x| < 1 (5.3)

so that

(I −B)α =

∞∑
h=0

Γ(α+ 1)

h!Γ(α+ 1− h)
(−B)hIα−h (5.4)

and, substituting in equation (5.2)

dpk(t)

dt
= −λα

k∑
h=0

Γ(α+ 1)

h!Γ(α+ 1− h)
(−1)hpk−h(t) (5.5)

subject to the same initial conditions as in (5.1), that is

p−1(t) = 0 ∀t and pk(0) =

{
1 k = 0

0 k ≥ 1
(5.6)
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5.1. THE SPACE-FRACTIONAL POISSON PROCESS: STANDARD CASE

5.1.1 Properties of the space-fractional Poisson process

(i) Note that dpk(t)
dt in (5.5) depends on all probabilities pk−h(t) with 0 ≤ h ≤ k. This means that

the jumps of the space-fractional Poisson process can be of any integer-valued size (cf. Fig.
5.1).

(ii) For α = 1 equation (5.5) reduces to equation (5.1).

(iii) The distribution of jumps can be written as1

Pr {Nα(t, t+ dt] = k} =

{
(−1)k+1λα

k! α(α− 1) . . . (α− k + 1)dt+ o(dt) k ≥ 1

1− λαdt+ o(dt) k = 0
(5.7)

where α(α−1) . . . (α−k+1) can be represented by the Pochhammer symbol (α)k; alternatively
the distribution (5.7) can be rewritten as

Pr{Nα(t, t+ dt] = k} =
(−1)k+1λαΓ(α+ 1)

k!Γ(α+ 1− k)

=

dtλ
k

k!

∫∞
0 e−λsskν(ds) + o(dt) k ≥ 1

1− dt
∫∞
0 (1− e−λs)ν(ds) + o(dt) k = 0

(5.8)

where ν(ds) = αs−α−1

Γ(1−α) ds, s > 0 is the Lévy measure that is a measure on the half-line such
that ∫ ∞

0
(s ∧ 1) ν(ds) <∞ (5.9)

(iv) The probability generating function of Nα(t) satisfies the equation

{
dGα(u,t)

dt = −λα(1− u)αG(u, t)

Gα(u, 0) = 1
(5.10)

so the p.g.f. is obtained by solving the (5.10):

Gα(u, t) = e−t[λ(1−u)]
α (5.11)

The p.g.f. (5.10) is itself a probability and can be written as:

Gα(u, t) = e−t[λ(1−u)]
α
= Pr

{
min

1≤k≤N(t)
X

1
α
k ≥ 1− u

}
0 < u < 1 (5.12)

where the Xk’s are independent r.v.’s and have uniform distribution in [0, 1], N(t) is an
homogeneous Poisson process of rate λα.

1In fact, by recognising that λk−α

Γ(k−α)

∫∞
0

e−λssk−α−1ds = 1, it holds that λk

k!

∫∞
0

e−λssk αs−α−1

Γ(1−α)
ds =

λk

k!
α

Γ(1−α)
Γ(k−α)

λk−α . The last expression can be further manipulated as follows: λα

k!
αΓ(k−α)
Γ(1−α)

= λα

k!
αΓ(k−α)
Γ(1−α)

·
Γ(α)·Γ(1−(k−α))
Γ(α)·Γ(1−(k−α))

= λα

k!
Γ(α+1)

Γ(k−α+1)
· Γ(k−α)Γ(1−Γ(k−α))

Γ(α)Γ(1−α)
= λα

k!
Γ(α+1)

Γ(k−α+1)
· sin(πα)

sin(π(k−α))
= (−1)k+1

k!
λαΓ(α+1)
Γ(k−α+1)

, where the Eu-
ler’s "reflection formula" of the gamma function (i.e. i.e., for 0 < z < 1, Γ(z)Γ(1 − z) = π

sin(πz)
) has been applied

twice and by the bisection formula sin(π(k − α)) = sin(kπ) cos(πα)− cos(kπ) sin(πα) = (−1)k+1 sin(πα).
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5.1. THE SPACE-FRACTIONAL POISSON PROCESS: STANDARD CASE

Figure 5.1: Sample path for α < 1 of a space-fractional Poisson process Nα(t).

(v) By the exponential function properties in (5.11) the space-fractional process has independent
increments.

In fact

Gα(u, t) = e−λ
α(1−u)αt = e−λ

α(1−u)α[s+t−s] = Gα(u, s) ·Gα(u, t− s). (5.13)

(vi) From (5.11) the probability law of Nα(t) can be obtained as:

pαk (t) = Pr {Nα(t) = k} =
(−1)k

k!

∞∑
r=0

(−λαt)r

r!

Γ(αr + 1)

Γ(αr + 1− k)
≥ 0. (5.14)

For α = 1 immediately emerges that (5.14) is equal to the classic Poisson distribution.
Note that:

pα0 (t) = e−λ
αt

pα1 (t) = αλαte−λ
αt

pα2 (t) =
e−λ

αt

2!

[
(αλαt)2 + α(1− α)λαt

]
pα3 (t) =

e−λ
αt

3!

[
(αλαt)3 + 3(αλαt)2(1− α) + α(1− α)(2− α)λαt

]
pα4 (t) =

e−λ
αt

4!
[(αλαt)4 + 6(αλαt)3(1− α)

+ 6(αλαt)2(1− α)(2− α) + α(1− α)(2− α)(3− α)λαt]

(5.15)
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5.1. THE SPACE-FRACTIONAL POISSON PROCESS: STANDARD CASE

and in general:

pαk (t) =
e−λ

αt

k!

[
ck,kt

k + ck−1,kt
k−1 + . . .+ c2,kt

2 + c1,kt
]

(5.16)

See [18] for expressions of the coefficients (cf. Fig. 5.2 and Fig. 5.3).

Figure 5.2: Space-fractional Poisson: The time evolution for α = 1, α = 0.5 and α = 0.25 of the (survival)
probability pα0 (t), i.e. k = 0 (λ = 0.5).

(vii) Mean and variance diverge. In fact the first moment can be obtained from the first derivative
of the p.g.f.

∂

∂u
EuN

α(t)|u=1 = ENα(t)uN
α(t)−1|u=1 = ENα(t),

∂

∂u
Gα(u, t)|u=1 =

∂

∂u
e−λ

α(1−u)αt|u=1

Gα(u, t)(αλ
αt(1− u)α−1)|u=1 = ∞

(5.17)

being α < 1.

The second moment can be obtained from the k-th factorial moment

µX(k) = E[X(X − 1)...(X − k + 1)] (5.18)

E[X2] = µX(1) + µX(2) (5.19)

and the second moment diverges as well.
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5.1. THE SPACE-FRACTIONAL POISSON PROCESS: STANDARD CASE

Figure 5.3: Space-fractional Poisson: The time evolution of the state probabilities pαk (t) for k = 1, k = 2
and k = 4, and α = 0.5 (λ = 0.5) (cf. Fig. 5.2).

(viii) The space-fractional Poisson process is a time-changed Poisson process Nα(t) :

Nα(t)
D∼ N(Sα(t)) (5.20)

where Sα(t) is a stable subordinator of order 0 < α < 1, independent from N(t), that is a
process with Laplace transform (see Appendix B)

E
[
e−γSα(t)

]
= e−tγ

α
(5.21)

It is simple to check (5.20), having in mind (5.21), as follows

E
[
uN(Sα(t))

]
= E

[
E
(
uN(Sα(t))

∣∣∣Sα(t))] = E
[
uS

α(t)(1−u)
]

= e−t[λ(1−u)]
α
= E

[
uN

α(t)
]
= Gα(u, t) for |u| ≤ 1

(5.22)

(ix) Due to the possibility for the space-fractional Poisson process of multiple jumps over any inter-
val dt, the probabilistic nature of waiting times is different from the exponential distribution
characterising the homogeneous Poisson process. The first passage2 time of level k is defined
as:

2Note that, in the case of the space-fractional Poisson process, the first passage time, as defined by equation (5.23),
differs from the concept of hitting time, defined as T̂

(α)
k = inf{t ≥ 0 : N (α)(t) = k}, for which Pr{T̂ (α)

k < ∞} < 1 and
there is a positive probability of missing any level k (due to multiple jumps), cf. [8].
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5.2. GENERALIZED SPACE-FRACTIONAL POISSON PROCESSES

T
(α)
k = inf{t ≥ 0 : N (α)(t) ≥ k} (5.23)

The distribution of T (α)
k is obtained in [18] as

Pr{T (α)
k ∈ ds} = − d

ds

k−1∑
h=0

(−λ)h

h!

dh

dλh
e−sλ

α
, s > 0 (5.24)

where, for instance

Pr{T (α)
k ∈ ds} =

{
λαe−λ

αsds k = 1

λαeλ
αs(1− α+ αλαs)ds... k = 2

. (5.25)

[18] also derives an iterative construction, i.e.

Pr{T (α)
k ∈ ds} = Pr{T (α)

k−1 ∈ ds} − (−λ)k−1

(k − 1)!

d

ds
{ d

k−1

dλk−1
e−λ

αs}ds. (5.26)

Remark 5.1. In motor vehicle insurance, a tentative interpretation of subordination to a random
time can be car mileage, which can represent an operative measure for the "flow of time".

Remark 5.2 . The space-fractional Skellam process is defined as

S(t) = N1(Sα1(t))−N2(Sα2(t))

with Sα1 and Sα2 subordinators independent of N1(t) and N2(t).
It can perform upward and downward jumps of arbitrary lengths. For its properties see [4].

5.2 Generalized space-fractional Poisson processes

If we start from equation
dpk(t)

dt
= −f (λ (I −B)) pk(t) (5.27)

which generalizes (5.1) and (5.2), we are able to construct a new class of point processes with
independent increments.
The functions f appearing in (5.27) must belong to the class of Bernštein functions, which
are C∞(R+), non negative and such that3

(−1)k
dk

dxk
f(x) ≤ 0, x > 0, k ≥ 1 (5.28)

Furthermore the Bernštein functions have the following integral representation

f(x) = a+ bs+

∫ ∞

0
(1− e−xs)ν(ds) (5.29)

3Note that f(x) is such that f ′(x) ∼
∫∞
0

e−xsν(ds) > 0 and f ′′(x) ∼ −
∫∞
0

e−xsν(ds) < 0.
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where ν(ds) is the Lévy measure on (0,+∞) and such that∫ +∞

0
(s ∧ 1)ν(ds) <∞ (5.30)

In our text we assume a = b = 0. For each Lévy measure we define a Bernštein function by
means of (5.29).

Some particular Bernštein functions are

f(x) = x homogeneus Poisson

f(x) = xα standard space-fractional Poisson

f(x) = (x+ θ)α − θα tempered Poisson process

f(x) = log (1 + x) negative binomial process

(5.31)

The function xα is obtained by the Lévy measure

ν(ds) =
αs−(α+1)

Γ(1− α)
ds, 0 < α < 1. (5.32)

The function (x + θ)α − θα generates a process (tempered Poisson) with finite mean and
variance (see [18]).

The process related to (5.27) is denoted by Nf (t), with t > 0 and its probabilistic behaviour
is governed by the following relationship

Pr
{
Nf (t, t+ dt] = k

}
=

{
dtλ

k

k!

∫∞
0 e−λsskν(ds) + o(dt) k ≥ 1

1− dtf(λ) k = 0
(5.33)

The probability generating function of Nf reads

E
[
uN

f (t)
]
= e−tf(λ(1−u)) (5.34)

and can be derived by considering that

∂Gf

∂t (u, t) = −f {λ (I −B)}Gf (u, t)
Gf (u, 0) = 1

(5.35)

The relation with the homogeneous Poisson N(t) is given by

Nf (t) = N(Hf (t)) (5.36)

where Hf (t) is a subordinator with Laplace transform

E
[
e−µH

f (t)
]
= e−tf(µ) = e−t

∫∞
0 (1−e−sµ)ν(ds) (5.37)

If f(x) = xα, with 0 < α < 1, then Hf (t) is a stable subordinator and Nf (t) is the standard
space-fractional Poisson process dealt with above.
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If f(x) = (x+ θ)α − θα, corresponding to the Lévy measure ν(ds) = αs−α−1e−θs

Γ(1−s) ds with
θ > 0, 0 < α < 1 we have the Poisson process with tempered or relativistic stable distribution.
Its probability law is

Pr
{
Nα,θ(t) = m

}
=

(−1)m

m!

λmeθ
αt

(θ + λ)m

∞∑
k=0

(−t(λ+ θ))k

k!

Γ(αk + 1)

Γ(αk + 1−m)
m ≥ 0 (5.38)

If θ = 0 then the (5.38) is equal to the standard case (5.14), while if θ = 0 and α = 1 (5.38)
coincides with the distribution of the homogeneous Poisson process in (1.4).

Note that
E
[
Nα,θ(t)

]
= αλθα−1t

Var
[
Nα,θ(t)

]
= αλθα−2(λ(1− α) + θ)t

Cov
[
Nα,θ(t), Nα,θ(s)

]
= αλθα−2(λ(1− α) + θ)(s ∧ t)

(5.39)

Remark 5.3. To show that N1,0(t) = N(t), substitute θ = 0, α = 1 in (130)

lim
α→1
θ→0

Pr{Nα,θ(t) = m} =
(−1)m

m!

λm

λm

∞∑
k=0

(−λt)k

k!

Γ(k + 1)

Γ(k + 1−m)

= (−1)m
∞∑
k=0

(−λt)k

k!

k!

m!(k −m)!
= (−1)m

∞∑
k=0

(−λt)k

m!(k −m)!
forj = k −m

= (−1)m
∞∑
k=0

(−λt)j+m

m!j!
=

(−1)m(−λt)m

m!

∞∑
k=0

(−λt)j

j!

= e−λt
(λt)m

m!
.

If f(x) = log(1+x) and the related Lévy measure is ν(ds) = e−s

s ds s > 0 we have a Poisson
process NΓ(t), t > 0, with the Gamma-subordinator. Its probability generating function is

GΓ(u, t) = e−t log(1+λ(1−u)) =
1

[1 + λ(1− u)]t
(5.40)

The Γ-Poisson process has the structure of a renewal process with intertime U possessing
distribution

Pr {U > t} = GΓ(0, t) = (1 + λ)−t (5.41)

The process NΓ(t)
D∼ N [HΓ(t)] has Laplace transform

E
[
e−µH

f (t)
]
= (1 + µ)−t (5.42)

while the probability distribution of NΓ(t) reads

Pr
{
NΓ(t) = k

}
=

λkΓ(k + t)

Γ(t)k!(λ+ 1)k+t
k ≥ 0 (5.43)
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and has the form of a negative binomial distribution, i.e.

Pr
{
Bi = k

}
=

Γ(i+ k)

Γ(i)Γ(k + i)
piqk =

(
k + i− 1

k

)
piqk k ≥ 0, i ≥ 1. (5.44)

With p = (1 + λ)−1, q = λ(1 + λ)−1 and i = t then equation (5.44) is equal to (5.43).
The distributions of jumps in this case is

Pr
{
NΓ(t, t+ dt] = k

}
=


(

λ
λ+1

)k
1
kdt k ≥ 1

1− log(1 + λ)dt k = 0
(5.45)

which is a simil "logarithmic distribution". The main moments of NΓ(t) are

E
[
NΓ(t)

]
= λt

Var
[
NΓ(t)

]
= λ(λ+ 1)t

Cov
[
NΓ(s), NΓ(t)

]
= λ(λ+ 1)(s ∧ t).

(5.46)

Note that
Pr
{
NΓ(s) = r|NΓ(t) = k

}
=

(
k
r

)B(s+r,t−s+k−r)
B(s,t−s) =

= E
[(
k
r

)
Xr(1−X)k−r

] (5.47)

where X is a Beta random variable with parameters s and t− s, that is

Pr {X ∈ dx} =
xs−1(1− x)t−s−1

B(s, t− s)
dx, 0 < x < 1 (5.48)

with B(p, q) =
∫ 1
0 x

p−1(1− x)q−1dx = Γ(p)Γ(q)
Γ(p+q)

4.

5.3 Another fractional generalization of the Poisson process

A fractional Poisson process N̂ν(t) can be defined by the distribution (see [2])

Pr
{
N̂ν(t) = k

}
=

1

Eν,1(λt)

(λt)k

Γ(νk + 1)
, k ≥ 0 (5.49)

where

Eν,µ(x) =

∞∑
k=0

xk

Γ(νk + µ)
(5.50)

is the Mittag-Leffler function, with ν, µ > 0 The probability generating function of (5.49) is

Gν(u, t) = E
[
uN̂ν(t)

]
=
Eν,1(λut)

Eν,1(λt)
0 ≤ u ≤ 1 (5.51)

which satisfies a order-ν fractional differential equation in u (see Appendix C):{
∂νGν(u,t)

∂uν = λtGν(u, t) 0 < ν < 1

Gν(u, 0) = 1
(5.52)

4Note that the result generalizes the property of the Poisson process reported in equation (1.31).
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The expected value of N̂ν(t) is, as can be ascertained using d
duEν,1(λut) =

λt
ν Eν,ν(λut),

E
[
N̂ν(t)

]
=
λt

ν

Eν,ν(λt)

Eν,1(λt)
(5.53)

while the variance is:

Var
[
N̂ν(t)

]
=
λt

ν2
Eν,ν−1(λt)

Eν,1(λt)
+
λt

ν2
Eν,ν(λt)

Eν,1(λt)

{
1− λt

Eν,ν(λt)

Eν,1(λt)

}
(5.54)

For ν = 1, E1,1(x) = ex and N̂1(t) is the simple Poisson process. For ν < 1, N̂ν(t) has no longer
independent increments.

Remark 5.4. This process can be viewed as a fractional version of the Poisson process, because the
Mittag-Leffler function has a similar role as the exponential function ex in the analysis of equations
with fractional order derivatives.

Figure 5.4: Distribution pk(t), k ≥ 1 for λ = 1 and ν = 0.5.

It is easy to show that for i.i.d. r.v.’s with d.f. F (x)5:

Pr
{
max

(
X1, . . . , XN̂ν(t)

)
< u

}
=
Eν,1(λtF (u))

Eν,1(λt)
. (5.55)

5Cf. the Gnedenko-Gumbel distribution in formula (1.72)
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In fact

Pr{max{X1, ..., XN̂ν(t)
} < u}

= EN̂ν
[Pr{max{X1, ..., XN̂ν(t)

} < u|N̂ν(t)}]

= EN̂ν
[Pr(X1 < u)N̂ν(t)] =

∞∑
k=0

Pr(X1 < u)k
(λt)k

Γ(νk + 1)

1

Eν,1(λt)
=
Eν,1(λtF (u))

Eν,1(λt)
.

(5.56)

Moreover,

Pr{min(X1, ..., XN̂ν(t)
) > u} =

Eν,1(λt(1− F (u)))

Eν,1(λt)
(5.57)

The distribution of the waiting time of the first event T ν1 is

Pr{T̂ ν1 > t} = Pr(N̂ν(t) = 0) =
1

Eν,1(λt)
. (5.58)

Remark 5.5. The distribution (5.49) can be seen as a weighted transformation of the homogeneous
Poisson process (see Fig. 5.4):

Pr
{
N̂ν(t) = k

}
=

Pr{N(t) = k} k!
Γ(νk+1)∑∞

j=0 Pr{N(t) = j} j!
Γ(νj+1)

k ≥ 0

.

5.4 The time-fractional Poisson process

In this case it is useful to start the analysis from the equation governing the state probabilities (see
[2]) generalized by a (time)-fractional derivative

dνpk(t)

dtν
= −λpk(t) + λpk−1(t) k ≥ 0, p−1 = 0, 0 < ν < 1 (5.59)

subject to the initial conditions

pk(0) =

1 k = 0,

0 k ≥ 1,
(5.60)

where
dνpk(t)

dtν
=

1

Γ(1− ν)

∫ t

0

dpk(s)

ds

1

(t− s)ν
ds (5.61)

is the fractional derivative in the sense of Dzerbayshan-Caputo.
It can be shown (see [2]) that the distribution emerging from (5.59) has the form

pνk(t) = (λtν)k

k!

∑∞
r=0

(r+k)!
r!

(−λtν)r
Γ(ν(k+r)+1)

=
∑∞

r=k(−1)r−k
(
r
k

) (λtν)r

Γ(νr+1) k ≥ 0
(5.62)

and the process can be called time-fractional Poisson process Nν(t).
For small values of k it is possible to write the distribution (5.62) in terms of Mittag-Leffler functions
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as follows

pν0(t) = Eν,1(−λtν)

pν1(t) =
λtν

ν Eν,ν(−λt
ν)

pν2(t) =
(λtν)2

2!ν2
[(1− ν)Eν,2ν(−λtν) + Eν,2ν−1(−λtν)]

pν3(t) =
(λtν)3

3!ν3

[
2(1− ν)

(
1
2 − ν

)
Eν,3ν(−λtν) + 3(1− ν)Eν,3ν−1(−λtν) + Eν,3ν−2(−λtν)

]
(5.63)

The probability generating function of the time fractional Poisson process Nν(t) is

GNν (u) = Eν,1 (λ(u− 1)tν) (5.64)

From (5.64) we can extract the mean and the variance (cf. Fig. 5.5 and Fig 5.6)

E [Nν(t)] = λtν

Γ(ν+1)

Var [Nν(t)] = λtν

Γ(ν+1) +
(λtν)2

ν

{
1

Γ(2ν) −
1

νΓ2(ν)

}
> 0

(5.65)

Clearly, the time-fractional Poisson process is overdispersed6.

Figure 5.5: Comparison between expected values (w.r.t. time) of a time-fractional Poisson process of
different parameters ν = {1, 0.5, 0.25} and λ = 1. Note: ν = 1 corresponds to the standard Poisson process.

The time-fractional Poisson process is a renewal process with intertimes Uj = τj − τj−1 having the
Mittag-Leffler distribution

Pr {Uj > t} = Pr{T ν1 > t} = Pr {Nν(t) = 0} = Eν,1(−λtν) = pν0(t) (5.66)

6For 0 < ν < 1, the term ∆(ν) = 1
Γ(2ν)

− 1
νΓ2(ν)

> 0. In fact, by means of the Legendre duplication formula of

the gamma function, i.e. Γ(2z) =
Γ(z)Γ(z+ 1

2
)

21−2z
√
π

, one can easily check that ∆(ν) > 0, 0 < ν < 1.
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Figure 5.6: Comparison between variances (w.r.t. time) of a time-fractional Poisson process of different
parameters ν = {1, 0.5, 0.25} (λ = 1). Note: ν = 1 corresponds to the standard Poisson process.

One can notice (cf. Fig 5.7) how intertimes have longer durations than exponential, corresponding
to "plateau" with no jumps, followed by clusters of (unit) jumps. Indeed the intertimes have infinite
expectations.
The density of the random variables Uj is

Pr {Uj ∈ dt} = λtν−1Eν,ν(−λtν)dt t > 0, 0 < ν < 1 (5.67)

and has Laplace transform ∫ ∞

0
e−µtPr {Uj ∈ dt} =

λ

λ+ µν
, µ > 0. (5.68)

We are able to calculate:

Pr {Nν(t) = k} = Pr {U1 + . . .+ Uk < t, U1 + . . .+ Uk+1 > t}

= Pr {U1 + . . .+ Uk < t} − Pr {U1 + . . .+ Uk+1 < t}

= Pr{T (ν)
k < t} − Pr{T (ν)

k+1 < t}

(5.69)

and by means of Laplace transform:∫ ∞

0
e−µtPr {Nν(t) = k} dt = µν−1λk

(λ+ µν)k+1
(5.70)

that is equal to the Laplace transform of the solution.
The time-fractional Poisson process can be represented as a Poisson process with a time change
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obtained by the "inverse" of a Stable subordinator (see [15]). More precisely, it admits the following
representation:

Nν(t)
D
= N(Lν(t)), 0 < ν ≤ 1, t ≥ 0 (5.71)

where N is a homogeneous Poisson process and Lν(t) is the inverse of a Stable subordinator Sν(t),
i.e.

Pr{Lν(t) > s} = Pr{Sν(s) < t} (5.72)

For the hitting time of the time-fractional Poisson process

τ
(ν)
k = inf(t > 0 : Nν(t) = k), k ≥ 1, ν ∈ (0, 1] (5.73)

[2] provide the expression

Pr{τ (ν)k ∈ ds} = λkβ

∞∑
h=0

(
−k
h

)
λhβ

sν(k+h)−1

Γ(ν(k + h))
ds. (5.74)

Remark 5.6. The time-fractional Skellam process
The time-fractional Skellam process is expressed in terms of the difference of two time-fractional
Poisson processes (see [4])

fSk(t) = N1(L
(1)(t))−N2(L

(2)(t))

where L(1)(t) and L(2)(t) are two independent inverse stable subordinators of indexes ν1 and ν2

both in (0, 1).

.

5.5 The space-time fractional Poisson process

A space-time fractional Poisson process Nα
ν , α, ν ∈ (0, 1), can be easily understood by means of sub-

ordination of an ordinary Poisson process to both a Stable and then its inverse Stable subordinator.
As such, it can be represented as Nα

ν (t) = N(Sα(Lα(t))), t ≥ 0, where Dα(t) is an independent
α-Stable subordinator and Lα(t) is its inverse.

We refer to [14], where the process is defined as an extension to the space-fractional Poisson (see
also [15]).

Quite naturally, on one side, the "space-fractional" dimension of the process involves the fractional
"shift" operator ∆α = (1−B)α for its construction, as it appears in the (fractional) Cauchy problem
for the state probabilities pα,νk (t), k ≥ 0, i.e.

dν

dtν
pα,νk (t) = −λα(1−B)αpα,νk (t) (5.75)

where, on the other side, a (Caputo) time-fractional derivative operator takes into accounts the
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Figure 5.7: Time-fractional Poisson: A sample trajectory for ν = 0.9, ν = 0.5 and ν = 0.25. Note the
"slow pace" of progress of the counts w.r.t. time.

time-fractional dimension, subject to the initial condition

pα,νk (0) =

{
0 k ≥ 1

1 k = 0
(5.76)

The "time-fractional" and "space-fractional" dimensions appear more evident in state probabilities
pα,νk (t) = Pr{Nα

ν (t) = k}, which are given as (see [14])

pα,νk (t) =
(−1)k

k!

∞∑
h=0

(−λαtν)h

Γ(νh+ 1)

Γ(αh+ 1)

Γ(αh+ 1− k)
k ≥ 1, α ∈ (0, 1], ν ∈ (0, 1], (5.77)

where state-probabilities appear as a "natural" integration of the respective specific structures.
Indeed, setting α = 1 and ν = 1 the time-fractional and space-fractional Poisson processes are
recovered, respectively. See also [3].
The probability generating function Gα,ν(u) obtains as solution of dν

dtνGα,ν(u, t) = −λα(1− u)αGα,ν(u, t)

Gα,ν(u, 0) = 1
(5.78)

that is
Gα,ν(u) = Eν,1(−λα(1− u)αtν) |u| ≤ 1 (5.79)

where the Eν,1(x) = Eν(x) is indeed a one-parameter Mittag-Leffler function.

The p.g.f. Gα,ν(u) has a probabilistic interpretation with respect to the event (min1≤k≤Nν(t) U
1
α
k ≥
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1 − u), where the random variables Uk, k ≥ 1, are i.i.d uniforms, and Nν(t) is the time-fractional
Poisson process, i.e.

Gα,ν(u) = Pr{ min
1≤k≤Nν(t)

U
1
α
k ≥ 1− u} |u| < 1. (5.80)
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Appendix A

Probability generating functions.

The probability generating function (p.g.f.) of a discrete non negative r.v. X : {k, pk; k = 0, 1, 2, ...}
is defined as

GX(u) =

∞∑
k=0

pku
k |u| ≤ 1 for absolute convergence (A.1)

The name comes from the property

1

k!

∂kGX(u)

∂uk
|u=0 = pk (A.2)

Consequently, if GX(u) = GY (u) then pX = pY , i.e. if X and Y have the same p.g.f. then they
have the same distribution.
Note that

GX(1) =
∞∑
k=0

pk = 1G
(1)
X (1) =

∂GX(u)

∂u |u=1
= E[X] (A.3)

The k-th factorial moment is

µ(k) ≡ E[X(X − 1)...(X − k + 1)] = E[
X!

(X − k)!
] =

∂k

∂uk
GX(u)|u=1 = G

(k)
X (1) (A.4)

Therefore, the variance is

Var[X] = E[X(X−1)]+E[X]−E2[X] = µX(2)+µ
X
(1)−(µX(1))

2 = G
(2)
X (1)+G

(1)
X (1)−(G

(1)
X (1))2. (A.5)

In general, the p.g.f. of a r.v. X is defined as

GX(u) = E[uX ] |u| ≤ 1 (A.6)

Given that the moment generating function (m.g.f.) is

MX(θ) ≡ E[eθX ] (A.7)

then
MX(θ) = GX(e

θ) (A.8)
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Chapter A. Probability generating functions.

If Xi, i = 1, 2, ..., n, are n independent r.v.’s and Sn =
∑n

i=1 aiXi, ai constants, then

GSn(u) = E[uSn ] = E[u
∑

i aiXi ] = E[ua1X1 ...uanXn ] =

n∏
i=1

E[uaiXi ] =
n∏
i=1

GXi(u
ai) (A.9)

For the special case S = X1 −X2

GS(u) = GX1(u)GX2(
1

u
) (A.10)

If N is a discrete r.v. independent of Xi and SN =
∑N

i=1Xi

GSN
(u) = E[u

∑
iXi ] = EN [E[u

∑
i=1Xi |N ]] (A.11)

= EN [
N∏
i=1

E[uXi ]] = EN [
N∏
i=1

GXi(u)] =

∞∑
n=1

pn

n∏
i=1

GXi(u) (A.12)

and if the Xi are also identically distributed (i.i.d.) then

GSN (u) = EN [GX(u)N ] = GN (GX(u)). (A.13)

Examples
• The p.g.f. of a constant c is

Gc(u) = uc. (A.14)

• The p.g.f. of a Bernoulli r.v. X with parameter p is

GX(u) = E[uX ] = [pu1 + (1− p)u0] = [up+ (1− p)]; (A.15)

• The p.g.f. of a Binomial r.v. Sn =
∑n

i=1Xi is

E[uSn ] = E[
n∏
i=1

uXi ] =
n∏
i=1

E[uXi ] = E[uX1 ]n (A.16)

respectively by independence and equi-distribution of the Xi so that finally

= [u1p+ (1− p)u0]n = [up+ (1− p)]n (A.17)

where p is the parameter of the Bernoulli r.v. Xi.
• The p.g.f. of a Poisson(λ) r.v. is

GX(u) =

∞∑
k=0

e−λ
λk

k!
uk = eλ(u−1). (A.18)
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Appendix B

Stable random variables and stable
subordinators.

B.1 Stable random variables

A random variable X is Stable iff ∀ a1, a2 ∈R+ and ∀X1, X2, X, i.i.d., ∃b > 0 and c ∈ R such that:

a1X1 + a2X2
D∼ bX + c (B.1)

If X is Stable, ∃α ∈ (0, 2] called stability index, such that:

aα1 + aα2 = bα. (B.2)

We write X is α-Stable.
The c.f. of an α-Stable r.v. X is the following:

E(eiθX) =

{
e−σ

α|θ|α(1−iβθ tan απ
2
)+iµθ α ̸= 1

e−σ|θ|(1+iβ
2
π
θ ln |θ|)+iµθ α = 1

(B.3)

with σ > 0, β ∈ [−1, 1], µ ∈ R. We write also X ∼ Sα(σ, β, µ).
If X > 0 we have also the Laplace transform

E(e−γX) =

{
exp{− σαγα

cos{απ
2
}} α ̸= 1

exp{−σ 2
π ln γ} α = 1

(B.4)

Example. Let X ∼ N(µ, σ2), then α = 2 and

b =
√
a21 + a22, (B.5)

c = (a1 + a2 − b)µ. (B.6)
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B.2. STABLE SUBORDINATORS

B.2 Stable subordinators

The general idea of subordination refers to a process which evolves in an "operative" (as opposed
to natural) random time.

• A subordinator is an (a.s.) non-decreasing right-continuous process with stationary, i.i.d.
increments (a case of Levy process). A Stable subordinator is an α-Stable process Sα(t); an
inverse Stable subordinator L(x) represents the first passage time of a Stable subordinator Sα
for a level x, i.e. L(x) = inf{t : Sα(t) ≥ x}, x > 0. The following results hold.

• α-Stable subordinators Sα(t), 0 < α < 1, are characterized by Laplace transform of the form

E[e−θSα(t)] = e−θ
αt θ > 0, t > 0 (B.7)

• α-Stable subordinators, 0 < α < 1, scale in time according to a power-law with exponent
greater than unity, i.e.

Sα(ct) ∼ c
1
αSα(t), c > 0 (B.8)

Inverse α-Stable subordinators, 0 < α < 1, scale in time according to a power-law with
exponent smaller than unity, i.e.

Sα(ct)
d∼ cαSα(t), c > 0 (B.9)

The density function of an α−Stable subordinator is given by

hα(x, t) = αtx−(α+1)Wα(tx
−α) x > 0 (B.10)

while the density function of its inverse α−Stable subordinator is given by

lα(t, x) = t−αWα(t
−αx) x > 0 (B.11)

where Wα(x) is the Wright function

Wα(x) ≡W−α,1−α(x) =

∞∑
k=0

(−x)k

k!Γ(−αk + (1− α))
. (B.12)

The two densities are related as

lα(t, x) = − ∂

∂t

∫ x

0
hα(y, t)dy (B.13)

Closed form densities arise for α = 1
2 , in which case

h 1
2
(x, t) =

t√
4πx3

e−
t2

4x (B.14)
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B.2. STABLE SUBORDINATORS

which corresponds to the first passage time distribution (Inverse Gaussian) of a standard
Brownian motion through the level t√

2
(or, equivalently, of a Brownian motion with variance√

2 through a level t), and

l 1
2
(t, x) =

1√
πx
e−

t2

4x (B.15)

which corresponds to the probability distribution of the maximum of a Brownian motion over
a time interval (0, x).
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Appendix C

Fractional derivatives.

The Riemann-Liouville fractional integral of order α is defined as

(Iαf)(x) =
1

Γ(α)

∫ x

0
(x− y)α−1f(y)dy, α > 1 (C.1)

The fractional derivative of order α of a (well behaved) function is the ordinary m-th derivative Dm

of a fractional Riemann-Liouville integral of order m− α, i.e.

(Dαf)(x) = [Dm(Im−αf)](x), for m− 1 < α < m,α > −1 (C.2)

In fact the Riemann-Liouville fractional derivative of a function f(x) is defined explicitly as

(Dαf)(x) =

{
1

Γ(m−α)
dm

dxm

∫ x
0

f(y)
(x−y)α+1−mdy m− 1 < α < m

dm

dxm f(x) α = m
(C.3)

Note that the fractional integral is an extension of the Cauchy formula:∫ x

0
dx1

∫ x1

0
dx2...

∫ xn−1

0
f(xn)dxn =

1

(n− 1)!

∫ x

0
f(xn)(x− xn)

n−1dxn. (C.4)

and the m-th (ordinary) derivative of a power function xn is

Dmxn =
dmxn

dxm
= n(n− 1)(n−m+ 1)xn−m =

n!

(n−m)!
xn−m =

Γ(n+ 1)

Γ(n−m+ 1)
xn−m, m ≤ n.

(C.5)
By analogy the fractional α-th derivative can be obtained directly as

dα

dxα
xn =

Γ(n+ 1)

Γ(n− α+ 1)
xn−α, α ≤ n. (C.6)

For example the derivative of half order (i.e., α = 1
2) for n = 1 gives

d
1
2

dx
1
2

x =
Γ(2)

Γ(32)
x

1
2 =

x
1
2

Γ(32)
=

1
1
2

√
π
x

1
2 . (C.7)
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Chapter C. Fractional derivatives.

The Dzherbashyan-Caputo fractional derivative is defined as

(Dα
c f)(x) =

 1
Γ(m−α)

∫ x
0

dm

dym
f(y)

(x−y)α+1−mdy m− 1 < α < m
dm

dxm f(x) α = m
(C.8)
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